References
- Bailey T., Sheets J., McClary D., Smith S., Bridges A. (2016). Heat abatement. Elanco Dairy Business Unit. https://assets.ctfassets.net.
- Baumgard L.H., Rhoads R.P. (2012). Ruminant Nutrition Symposium: ruminant production and metabolic responses to heat stress. J. Anim. Sci., 90: 1855–1865.
- Baumgard L.H., Wheelock J.B., Sanders S.R., Moore C.E., Green H.B., Waldron M.R., Rhoads R.P. (2011). Postabsorptive carbohydrate adaptations to heat stress and monensin supplementation in lactating Holstein cows. J. Dairy Sci., 94: 5620–5633.
- Baumgard L.H., Collier R.J., Bauman D.E. (2017). A 100-year review: Regulation of nutrient partitioning to support lactation. J. Dairy Sci., 100: 10353–10366.
- Bernabucci U., Lacetera N., Baumgard L.H., Rhoads R.P., Ronchi B., Nardone A. (2010). Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal, 4: 1167–1183.
- Bernabucci U., Basiricò L., Morera P., Dipasquale D., Vitali A., Piccioli Cappelli F., Calamari L. (2015). Effect of summer season on milk protein fractions in Holstein cows. J. Dairy Sci., 98: 1815–1827.
- Bionaz M., Trevisi E., Calamari L.U.I., Librandi F., Ferrari A., Ber-toni G. (2007). Plasma paraoxonase, health, inflammatory conditions, and liver function in transition dairy cows. J. Dairy Sci., 90: 1740–1750.
- Bohmanova J., Misztal I., Cole J.B. (2007). Temperature-humidity indices as indicators of milk production losses due to heat stress. J. Dairy Sci., 90: 1947–1956.
- Bradford B.J., Yuan K., Farney J.K., Mamedova L.K., Carpenter A.J. (2015). Invited review: Inflammation during the transition to lactation: New adventures with an old flame. J. Dairy Sci., 98: 6631–6650.
- Braga Paiano R., Becker Birgel D., Harry Birgel Junior E. (2019). Uterine involution and reproductive performance in dairy cows with metabolic diseases. Animals (Basel), 9: 93.
- Brügemann K., Gernand E., König von Borstel U., König S. (2012). Defining and evaluating heat stress thresholds in different dairy cow production systems. Arch. Anim. Breed., 55: 13–24.
- Butler W.R. (2005). Inhibition of ovulation in the postpartum cow and the lactating sow. Livest. Prod. Sci., 98: 5–12.
- Carabaño M.J., Logar B., Bormann J., Minet J., Vanrobays M.L., Díaz C., Tychon B., Gengler N., Hammami H. (2016). Modeling heat stress under different environmental conditions. J. Dairy Sci., 99: 3798–3814.
- Carpenter A.J., Ylioja C.M., Vargas C.F., Mamedova L.K., Mendonça L.G., Coetzee J.F., Hollis L.C., Gehring R., Bradford B.J. (2016). Hot topic: Early postpartum treatment of commercial dairy cows with nonsteroidal antiinflammatory drugs increases whole-lactation milk yield. J. Dairy Sci., 99: 672–679.
- Cartwright S.L., Schmied J., Karrow N., Mallard B.A. (2023). Impact of heat stress on dairy cattle and selection strategies for thermotolerance: a review. Front. Vet. Sci., 10: 1198697.
- Carvalho M.R., Penagaricano F., Santos J.E.P., DeVries T.J., McBride B.W., Ribeiro E.S. (2019). Long-term effects of postpartum clinical disease on milk production, reproduction, and culling of dairy cows J. Dairy Sci., 102: 11701–11717.
- Chastant S., Saint-Dizier M. (2019). Inflammation: friend or foe of bovine reproduction? Anim. Reprod., 16: 539–547.
- Chen L., Thorup V.M., Kudahl A.B., Ostergaard S. (2024). Effects of heat stress on feed intake, milk yield, milk composition, and feed efficiency in dairy cows: A meta-analysis. J Dairy Sci., 107: 3207–3218.
- Chen S., Wang J., Peng D., Li G., Chen J., Gu X. (2018). Exposure to heat-stress environment affects the physiology, circulation levels of cytokines, and microbiome in dairy cows. Sci. Rep., 8: 14606.
- Cheong S.H., Sa Filho O.G., Absalon-Medina V.A., Pelton S.H., Butler W.R., Gilbert R.O. (2016). Metabolic and endocrine differences between dairy cows that do or do not ovulate first postpartum dominant follicles. Biol. Reprod., 94: 18.
- Cowley F.C., Barber D.G., Houlihan A.V., Poppi D.P. (2015). Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism. J. Dairy Sci., 98: 2356–2368.
- Das R., Sailo L., Verma N., Bharti P., Saikia J., Imtiwati, Kumar R. (2016). Impact of heat stress on health and performance of dairy animals: A review. Vet. World., 9: 260–268.
- De Rensis F., Lopez-Gatius F., García-Ispierto I., Morini G., Scar-amuzzi R.J. (2017). Causes of declining fertility in dairy cows during the warm season. Theriogenology, 91: 145–153.
- De Rensis F., Saleri R., García-Ispierto I., Scaramuzzi R., López-Gatius F. (2021). Effects of heat stress on follicular physiology in dairy cows. Animals, 11: 3406.
- de Vries M.J., Veerkamp R.F. (2000). Energy balance of dairy cattle in relation to milk production variables and fertility. J. Dairy Sci., 83: 62−69.
- Dikmen S., Hansen P.J. (2009). Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? J. Dairy Sci., 92: 109–116.
- Dovolou E., Giannoulis T., Nanas I., Amiridis G.S. (2023). Heat stress: A serious disruptor of the reproductive physiology of dairy cows. Animals, 13: 1846.
- Drackley J.K. (1999). Biology of dairy cows during the transition period: The final frontier? J. Dairy Sci., 82: 2259–2273.
- Dubub J., Duffield T.F., Leslie K.E., Walton J.S., LeBlanc S.J. (2012). Risk factors and effects of postpartum anovulation in dairy cows. J. Dairy Sci., 95: 1845–1854.
- Edmonson A.J., Lean I.J., Weave L.D., Farvel T., Webster G. (1989). A body condition scoring chart for Holstein dairy cows. J. Dairy Sci., 72: 68–78.
- Esposito G., Irons P.C., Webb E.C., Chapwanya A. (2014). Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Anim. Reprod. Sci., 144: 60–71.
- Ferguson J. (2020). Reproductive management in dairy herds. Clin. Theriogenol., 12: 309–322.
- Frühbeck G., Catalán V., Rodríguez A., Ramírez B., Becerril S., Salvador J., Portincasa P., Colina I., Gómez-Ambrosi J. (2017). Involvement of the leptin-adiponectin axis in inflammation and oxidative stress in the metabolic syndrome. Sci. Rep., 7: 6619.
- Gao S.T., Guo J., Quan S.Y., Nan X.M., Fernandez M.V.S., Baumgard L.H., Bu D.P. (2017). The effects of heat stress on protein metabolism in lactating Holstein cows. J. Dairy Sci., 100: 5040–5049.
- Gao S.T., Ma L., Zhou Z., Zhou Z.K., Baumgard L.H., Jiang D., Bionaz M., Bu D.P. (2019). Heat stress negatively affects the transcriptome related to overall metabolism and milk protein synthesis in mammary tissue of midlactating dairy cows. Physiol. Genom., 51: 400–409.
- García-Ispierto I., López-Gatius F., Bech-Sabat G., Santolaria P., Yániz J.L., Nogareda C., De Rensis F., López-Béjar M. (2007). Climate factors affecting conception rate of high producing dairy cows in northeastern Spain. Theriogenology, 67: 1379–1385.
- Garverick H.A., Harris M., Vogel-Bluel R., Sampson J., Bader J., Lamberson W., Spain J., Lucy M., Youngquist R. (2013). Concentrations of nonesterified fatty acids and glucose in blood of periparturient dairy cows are indicative of pregnancy success at first insemination. J. Dairy Sci., 96: 181–188.
- Gernand E., König S., Kipp C. (2019). Influence of on-farm measurements for heat stress indicators on dairy cow productivity, female fertility, and health J. Dairy Sci., 102: 6660–6671.
- Gilbert R.O. (2019). Symposium review: Mechanisms of disruption of fertility by infectious diseases of the reproductive tract. J. Dairy Sci., 102: 3754–3765.
- Gorniak T., Meyer U., Südekum K.H., Dänicke S. (2014). Impact of mild heat stress on dry matter intake, milk yield and milk composition in mid-lactation Holstein dairy cows in a temperate climate. Arch. Anim. Nutr., 68: 358–369.
- Gross J.J. (2023). Dairy cow physiology and production limits. Anim. Front., 13: 44–50.
- Guo Z., Gao S., Ouyang J., Ma L., Bu D. (2021). Impacts of heat stress-induced oxidative stress on the milk protein biosynthesis of dairy cows. Animals (Basel), 11: 726.
- Hammami H., Bormann J., M’hamdi N., Montaldo H.H., Gengler N. (2013). Evaluation of heat stress effects on production traits and somatic cell score of Holsteins in a temperate environment. J. Dairy Sci., 96: 1844–1855.
- Hammami H., Vandenplas J., Vanrobays M.L., Rekik B., Bastin C., Gengler N. (2015). Genetic analysis of heat stress effects on yield traits, udder health, and fatty acids of Walloon Holstein cows. J. Dairy Sci., 98: 4956–4968.
- Hassan F.U., Nawaz A., Rehman M.S., Ali M.A., Dilshad S.M.R., Yang C. (2019). Prospects of HSP70 as a genetic marker for thermo-tolerance and immuno-modulation in animals under climate change scenario. Anim. Nutr., 5: 340–350.
- Heck J.M., van Valenberg H.J., Dijkstra J., van Hooijdonk A.C. (2009). Seasonal variation in the Dutch bovine raw milk composition. J. Dairy Sci., 92: 4745–4755.
- Hostens M., Fievez V., Leroy J.L., Van Ranst J., Vlaeminck B., Opsomer G. (2012). The fatty acid profile of subcutaneous and abdominal fat in dairy cows with left displacement of the abomasum. J. Dairy Sci., 95: 3756–3765.
- Hut P.R., Scheurwater,J., Nielen M., van den Broek J., Hostens M.M. (2022). Heat stress in a temperate climate leads to adapted sensor-based behavioral patterns of dairy cows. J. Dairy Sci., 105: 6909–6922.
- Kim S.H., Ramos S.C., Valencia R.A., Cho Y.I., Lee S.S. (2022). Heat stress: Effects on rumen microbes and host physiology, and strategies to alleviate the negative impacts on lactating dairy cows. Front. Microbiol., 13: 804562.
- Koch F., Lamp O., Eslamizad M., Weitzel J., Kuhla B. (2016). Metabolic response to heat stress in late-pregnant and early lactation dairy cows: implications to liver-muscle crosstalk. PloS One, 11: e0160912.
- Komisarek J., Stefanska B., Nowak W. (2022) The effect of ruminal fluid pH on milk fatty acids composition in cattle. Ann. Anim. Sci., 22: 625–631.
- Lambertz C., Sanker C., Gauly M. (2014). Climatic effects on milk production traits and somatic cell score in lactating Holstein-Frie-sian cows in different housing systems. J. Dairy Sci., 97: 319–329.
- Lamp O., Derno M., Otten W., Mielenz M., Nürnberg G., Kuhla B. (2015). Metabolic heat stress adaption in transition cows: differences in macronutrient oxidation between late-gestating and early-lactating German Holstein dairy cows. PLoS One, 10: e0125264.
- Lemal P., May K., König S., Schroyen M., Gengler N. (2023). Invited review: From heat stress to disease – Immune response and candidate genes involved in cattle thermotolerance. J. Dairy Sci., 106: 4471–4488.
- Leroy J.L.M.R., Vanholder T., Mateusen B., Christophe A., Opsomer G., de Kruif A., Genicot G., Van Soom A. (2005). Nonesterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction, 130: 485–495.
- Liu Z., Ezernieks V., Wang J., Arachchillage N.W., Garner J.B., Wales W.J., Cocks B.G., Rochfort S. (2017). Heat stress in dairy cattle alters lipid composition of milk. Sci. Rep., 7: 961.
- Lucy M.C. (2000). Regulation of ovarian follicular growth by somatotropin and insulin-like growth factors in cattle. J. Dairy Sci., 83: 1635–1647.
- McArt J.A., Nydam D.V., Oetzel G.R., Overton T.R., Ospina P.A. (2013). Elevated non-esterified fatty acids and β-hydroxybutyrate and their association with transition dairy cow performance. Vet. J., 198: 560–570.
- Mendonca L.C., Carvalho W.A., Campos M.M., Souza G.N., de Oliveira S.A., Meringhe G.K.F., Negrao J.A. (2024). Heat stress affects milk yield, milk quality, and gene expression profiles in mammary cells of Girolando cows. J. Dairy Sci., https://doi.org/10.3168/jds.2024-25498.
- Menta P.R., Machado V.S., Piñeiro J.M., Thatcher W.W., Santos J.E.P., Vieira-Neto A. (2022). Heat stress during the transition period is associated with impaired production, reproduction, and survival in dairy cows. J. Dairy Sci., 105: 4474–4489.
- Min L., Zhao S., Tian H., Zhou X., Zhang Y., Li S., Yang H., Zheng N., Wang J. (2017). Metabolic responses and “omics” technologies for elucidating the effects of heat stress in dairy cows. Int. J. Biometeorol., 61: 1149–1158.
- Morton J.M., Tranter W.P., Mayer D.G., Jonsson N.N. (2007). Effects of environmental heat on conception rates in lactating dairy cows: critical periods of exposure. J. Dairy Sci., 90: 2271–2278.
- Nardone A., Lacetera N., Bernabucci U., Ronchi. B. (1997). Composition of colostrum from dairy heifers exposed to high air temperatures during late pregnancy and the early postpartum period. J. Dairy Sci., 80: 838–844.
- National Research Council (1971). A Guide to Environmental Research on Animals. Natl. Acad. Sci., Washington, DC, USA.
- National Research Council (2001). Nutrient Requirements of Dairy Cattle. 7th revised edition. Natl. Acad. Sci., Washington, DC, USA.
- Negrón-Pérez V.M., Fausnacht D.W., Rhoads M.L. (2019). Invited review: Management strategies capable of improving the reproductive performance of heat-stressed dairy cattle. J. Dairy Sci., 102: 10695–10710.
- Quellet V., Cabrera V.E., Fadul-Pacheco L., Charbonneau É. (2019). The relationship between the number of consecutive days with heat stress and milk production of Holstein dairy cows raised in a humid continental climate. J. Dairy Sci., 102: 8537–8545.
- Pinto S., Hoffmann G., Ammon C., Amon T. (2022). Critical THI thresholds based on the physiological parameters of lactating dairy cows. J. Therm. Biol., 88: 102523.
- Rhoads M.L., Rhoads R.P., VanBaale M.J., Collier R.J., Sanders S.R., Weber W.J., Crooker B.A., Baumgard L.H. (2009). Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. J. Dairy Sci., 92: 1986–1997.
- Ruiz-Gonzalez A., Suissi W., Baumgard L.H., Martel-Kennes Y., Chouinard P.Y., Gervais R., Rico D.E. (2023). Increased dietary vitamin D3 and calcium partially alleviate heat stress symptoms and inflammation in lactating Holstein cows independent of dietary concentrations of vitamin E and selenium. J. Dairy Sci., 106: 3984–4001.
- Safa S., Kargar S., Moghaddam G.A., Ciliberti M.G., Caroprese M. (2019). Heat stress abatement during the postpartum period: effects on whole lactation milk yield, indicators of metabolic status, inflammatory cytokines, and biomarkers of the oxidative stress. J. Anim. Sci., 97: 122–132.
- Sammad A., Umer S., Shi R., Zhu H., Zhao X., Wang Y. (2020). Dairy cow reproduction under the influence of heat stress. J. Anim. Physiol. Anim. Nutr. (Berl.), 104: 978–986.
- Schüller L.K., Burfeind O., Heuwieser W. (2014). Impact of heat stress on conception rate of dairy cows in the moderate climate considering different temperature-humidity index thresholds, periods relative to breeding, and heat load indices. Theriogenology, 81: 1050–1057.
- Shahzad K., Akbar H., Vailati-Riboni M., Basiricò,L., Morera P., Rodriguez-Zas S.L., Nardone A., Bernabucci U., Loor J.J. (2015). The effect of calving in the summer on the hepatic transcriptome of Holstein cows during the peripartal period. J. Dairy Sci., 98: 5401–5413.
- Shingfield K.J., Bonnet M., Scollan N.D. (2013). Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal, 7: 132–162.
- Smith D.L., Smith T., Rude B.J., Ward S.H. (2013). Short communication: comparison of the effects of heat stress on milk and component yields and somatic cell score in Holstein and Jersey cows. J. Dairy Sci., 96: 3028–3033.
- Sordillo L.M., Mavangira V. (2014). The nexus between nutrient metabolism, oxidative stress, and inflammation in transition cows. Anim. Prod. Sci., 54: 1204–1214.
- Stefanska B., Nowak W., Pruszynska-Oszmalek E., Mikuła R., Stanisławski D., Kasprowicz-Potocka M., Frankiewicz A., Maćkowiak P. (2016 a). The effect of body condition score on the biochemical blood indices and reproductive performance of dairy cows. Ann. Anim. Sci., 16: 129–143.
- Stefanska B., Pozniak A., Nowak W. (2016 b). Relationship between the pre- and postpartum body condition scores and periparturient indices and fertility in high-yielding dairy cows. J. Vet. Res., 60: 81–90.
- Stefanska B., Sobolewska P., Fievez V., Pruszynska-Oszmałek E,. Purwin C., Nowak W. (2024 a). The impact of heat stress on performance, fertility, and adipokines involved in regulating systemic immune response during lipolysis of early lactating dairy cows. J. Dairy Sci., 107: 2111–2128.
- Stefanska B., Pruszynska-Oszmalek E., Fievez V., Purwin C., Nowak W. (2024 b). Impact of heat stress during close-up dry period on performance, fertility and immunometabolic blood indices of dairy cows: prospective cohort study. Sci. Rep., 14: 21211.
- Tao S., Orellana R.M., Weng X., Marins T.N., Dahl G.E., Bernard J.K. (2018). Symposium review: The influences of heat stress on bovine mammary gland function. J. Dairy Sci., 101: 5642–5654.
- Tao S., Orellana Rivas R.M., Marins T.N., Chen Y.C., Gao J., Bernard J.K. (2020). Impact of heat stress on lactational performance of dairy cows. Theriogenology, 150: 437–444.
- Vinet A., Mattalia S., Vallée R., Bertrand C., Cuyabano B.C.D., Boichard D. (2023). Estimation of genotype by temperature-humidity index interactions on milk production and udder health traits in Montbeliarde cows. Genet. Sel. Evol., 55: 4.
- Wang D., Chen Z., Zhuang X., Luo J., Chen T., Xi Q., Zhang Y., Sun J. (2020). Identification of circRNA-associated-ceRNA networks involved in milk fat metabolism under heat stress. Int. J. Mol. Sci., 21: 4162.
- Wheelock J.B., Rhoads R.P., Vanbaale M.J., Sanders S.R., Baumgard L.H. (2010). Effects of heat stress on energetic metabolism in lactating Holstein cows. J. Dairy Sci., 93: 644–655.
- Yang W., Wang S., Zhao Y., Jiang Q., Loor J.J., Tian Y., Fan W., Li M., Zhang B., Cao J., Xu C. (2023). Regulation of cholesterol metabolism during high fatty acid-induced lipid deposition in calf hepatocytes. J. Dairy Sci., 106: 5835–5852.
- Zimbelman R.B., Rhoads R.P., Rhoads M.L., Duff G.C., Baumgard L.H., Collier R.J. (2009). A re-evaluation of the impact of temperature humidity index (THI) and black globe humidity index (BGHI) on milk production in high-producing dairy cows. Proc. 24th Southwest Nutrition Conference, 26–27.02.2009, Tempe, USA, pp. 158–169.
- Zulu V.C., Nakao T., Sawamukai Y. (2002). Insulin-like growth factor-I as a possible hormonal mediator of nutritional regulation of reproduction in cattle. J. Vet. Med. Sci., 64: 657–665.