Have a personal or library account? Click to login
Long Story From Past to Present: Calcium, Phosphorus, and Phytase –A Review Cover

Long Story From Past to Present: Calcium, Phosphorus, and Phytase –A Review

Open Access
|Jul 2025

References

  1. Abd El-Hack M.E., Alagawany M., Arif M., Emam M., Saeed M., Arain M.A., Siyal F.A., Patra A., Elnesr S.S., Khan R.U. (2018). The uses of microbial phytase as a feed additive in poultry nutrition –a review. Ann. Anim. Sci., 18: 639–658.
  2. Amerah A.M., Plumstead P.W., Barnard L.P., Kumar A. (2014). Effect of calcium level and phytase addition on ileal phytate degradation and amino acid digestibility of broilers fed corn-based diets. Poult. Sci., 93: 906–915.
  3. An S.H., Sung J.Y., Kong C. (2020). Ileal digestibility and total tract retention of phosphorus in inorganic phosphates fed to broiler chickens using the direct method. Animals, 10: 2167.
  4. Anwar M.N., Ravindran V., Morel P.C.H., Ravindran G., Cowieson A.J. (2015). Measurement of true ileal calcium digestibility in meat and bone meal for broiler chickens. Anim. Feed Sci. Technol., 206: 100–107.
  5. Anwar M.N., Ravindran V., Morel P.C.H., Ravindran G., Cowieson A.J. (2016 a). Effect of limestone particle size and calcium to non-phytate phosphorus ratio on true ileal calcium digestibility of limestone for broiler chickens. Br. Poult. Sci., 57: 707–713.
  6. Anwar M.N., Ravindran V., Morel P.C.H., Ravindran G., Cowieson A.J. (2016 b). Apparent ileal digestibility of calcium in limestone for broiler chickens. Anim. Feed Sci. Technol., 213: 142–147.
  7. Anwar M.N., Ravindran V., Morel P.C.H., Ravindran G., Cowieson A. J. (2016 c). Measurement of true ileal calcium digestibility in meat and bone meal for broiler chickens using the direct method. Poult. Sci., 95: 70–76.
  8. Anwar M.N., Ravindran V., Morel P.C.H., Ravindran G., Cowieson A.J. (2017). Effect of calcium source and particle size on the true ileal digestibility and total tract retention of calcium in broiler chickens. Anim. Feed Sci. Technol., 224: 39–45.
  9. Anwar M.N., Ravindran V., Morel P.C.H., Ravindran G., Cowieson A.J. (2018). Measurement of the true ileal calcium digestibility of some feed ingredients for broiler chickens. Anim. Feed Sci. Technol., 237: 118–128.
  10. Aureli R., Ueberschlag Q., Klein F., Noël C., Guggenbuhl P. (2017). Use of near infrared reflectance spectroscopy to predict phytate phosphorus, total phosphorus, and crude protein of common poultry feed ingredients. Poult. Sci., 96: 160–168.
  11. Aviagen (2014). Ross broiler: nutrition specifications. Huntsville (AL): Aviagen group.
  12. Aviagen (2019). Ross broiler: nutrition specifications. Huntsville (AL): Aviagen group.
  13. Aviagen (2022). Ross broiler: nutrition specifications. Huntsville (AL): Aviagen group.
  14. Babatunde O.O., Bello A., Dersjant-Li Y., Adeola O. (2021). Evaluation of the responses of broiler chickens to varying concentrations of phytate phosphorus and phytase. I. Starter phase (day 1–11 post hatching). Poult. Sci., 100: 101396.
  15. Babatunde O.O., Bello A., Dersjant-Li Y., Adeola O. (2022). Evaluation of the responses of broiler chickens to varying concentrations of phytate phosphorus and phytase. II. Grower phase (day 12–23 post hatching). Poult. Sci., 101: 101616.
  16. Bai S., Yang Y., Ma X., Liao X., Wang R., Zhang L., Li S., Luo X., Lu L. (2022). Dietary calcium requirements of broilers fed a conventional corn-soybean meal diet from 1 to 21 days of age. J. Anim. Sci. Biotechnol., 13: 1–12.
  17. Bavaresco C., Krabbe E.L., de Avila V.S., Lopes L.S., Wernick B., Martinez F.N. (2020). Calcium: phosphorus ratios and supplemental phytases on broiler performance and bone quality. J. Appl. Poult. Res., 29: 584–599.
  18. Bedford M.R., Apajalahti J.H. (2022). The role of feed enzymes in maintaining poultry intestinal health. J. Sci. Food Agric., 102: 1759–1770.
  19. Beeson L.A., Walk C.L., Bedford M.R., Olukosi O.A. (2017). Hydro-lysis of phytate to its lower esters can influence the growth performance and nutrient utilization of broilers with regular or super doses of phytase. Poult. Sci., 96: 2243–2253.
  20. Broch J., Nunes R.V., Eyng C., Pesti G.M., Souza C., Sangallia G.G., Fascina V., Teixeira L. (2018). Effect of dietary phytase superdosing on broiler performance. Anim. Feed Sci. Technol., 244: 56–65.
  21. Ceylan N., Koca S., Yavaş İ., Çenesiz A., Kahraman N., Özlü Ş. (2020). Response of modern broiler chickens to dietary calcium and phosphorus levels below recommendations. Ital. J. Anim. Sci., 19: 1244–1252.
  22. Chen X., Moran Jr. E.T. (1995). The withdrawal feed of broilers: Carcass responses to dietary phosphorus. J. Appl. Poult. Res., 4: 69–82.
  23. Cowieson A.J., Wilcock P., Bedford M.R. (2011). Super-dosing effects of phytase in poultry and other monogastrics. Worlds Poult. Sci. J., 67: 225–236.
  24. Cowieson A.J., Ruckebusch J.P., Knap I., Guggenbuhl P., Fru-Nji F. (2016). Phytate-free nutrition: A new paradigm in monogastric animal production. Anim. Feed Sci. Technol., 222: 180–189.
  25. Cozannet P., Jlali M., Moore D., Archibeque M., Preynat A. (2023). Evaluation of phytase dose effect on performance, bone mineralization, and prececal phosphorus digestibility in broilers fed diets with varying metabolizable energy, digestible amino acids, and available phosphorus concentration. Poult. Sci., 102: 102755.
  26. Cufadar Y., Golzar Adabi Sh., Gül E.T., Nollet L. (2024). Effects of graded levels of dietary microbial 6-phytase on performance, intestinal histomorphology, caecal microbial population and short-chain fatty acid composition of Lohmann white-classics. Br. Poult. Sci., 12: 1–10.
  27. CVB (2021). Veevoedertalbel (livestock feed table). Washington.
  28. David L.S., Abdollahi M.R., Ravindran G., Walk C.L., Ravindran V. (2019). Studies on the measurement of ileal calcium digestibility of calcium sources in broiler chickens. Poult. Sci., 98: 5582–5589.
  29. David L.S., Abdollahi M.R., Bedford M.R., Ravindran V. (2020). Effect of age and dietary crude protein content on the apparent ileal calcium digestibility of limestone in broiler chickens. Anim. Feed Sci. Technol., 263: 114468.
  30. David L.S., Abdollahi M.R., Bedford M.R., Ravindran V. (2021 a). Requirement of digestible calcium at different dietary concentrations of digestible phosphorus for broiler chickens. 1. Broiler starters (d 1 to 10 post-hatch). Poult. Sci., 100: 101439.
  31. David L.S., Abdollahi M.R., Bedford M.R., Ravindran V. (2021 b). True ileal calcium digestibility in soybean meal and canola meal, and true ileal phosphorus digestibility in maize-soybean meal and maize-canola meal diets, without and with microbial phytase, for broiler growers and finishers. Br. Poult. Sci., 62: 293–303.
  32. David L.S., Abdollahi M.R., Bedford M.R., Ravindran V. (2021 c). Comparison of the apparent ileal calcium digestibility of limestone in broilers and layers. Br. Poult. Sci., 62: 852–857.
  33. David L.S., Abdollahi M.R., Bedford M.R., Ravindran V. (2022). Requirement of digestible calcium at different dietary concentrations of digestible phosphorus for broiler chickens. 2. Broiler growers (d 11 to 24 post-hatch). Poult. Sci., 101: 102135.
  34. Delezie E., Bierman K., Nollet L., Maertens L. (2015). Impacts of calcium and phosphorus concentration, their ratio, and phytase supplementation level on growth performance, foot pad lesions, and hock burn of broiler chickens. J. Appl. Poult. Res., 24: 115–126.
  35. Dersjant-Li Y., Evans C., Kumar A. (2018). Effect of phytase dose and reduction in dietary calcium on performance, nutrient digestibility, bone ash and mineralization in broilers fed corn-soybean meal-based diets with reduced nutrient density. Anim. Feed Sci. Technol., 242: 95–110.
  36. Dersjant-Li Y., Christensen T., Knudsen S., Bello A., Toghyani M., Liu S.Y., Selle P.H., Marchal L. (2022 a). Effect of increasing dose level of a novel consensus bacterial 6-phytase variant on phytate degradation in broilers fed diets containing varied phytate levels. Br. Poult. Sci., 63: 395–405.
  37. Dersjant-Li Y., Abdollahi M.R., Bello A., Waller K., Marchal L., Ravindran V. (2022 b). Effects of a novel consensus bacterial 6-phytase variant on the apparent ileal digestibility of amino acids, total tract phosphorus retention, and tibia ash in young broilers. J. Anim. Sci., 100: skac037.
  38. Diana T.F., Calderano A.A., Tavernari F.D.C., Rostagno H.S., Teixeira A.D.O., Albino L.F.T. (2021). Age and calcium sources in laying hen feed affect calcium digestibility. Open J. Anim. Sci. 11: 501–513.
  39. Dilelis F., Freitas L.W.D., Quaresma D.V., Reis T.L., Souza C.S., Lima C.A.R.D. (2021 a). Determination of true ileal digestibility of phosphorus of fish meal in broiler diets. Anim. Feed Sci. Technol., 272: 114742.
  40. Dilelis F., Freitas L.W.D., Quaresma D.V., Machado N.D.J.B., Reis T.L., Souza C.S., Lima C.A.R.D. (2021 b). Standardized ileal phosphorus digestibility of meat and bone meal and poultry byproduct meal for broilers. Rev. Bras. de Zootec., 50: e20200086.
  41. Farhadi D., Karimi A., Sadeghi A.A., Rostamzadeh J., Bedford M.R. (2019). Effect of a high dose of exogenous phytase and supplementary myo-inositol on mineral solubility of broiler digesta and diets subjected to in vitro digestion assay. Poult. Sci., 98: 3870–3883.
  42. Farrokhi H., Abdullahpour R., Rezaeipour V. (2021). Influence of dietary phytase and protease, individually or in combination, on growth performance, intestinal morphology, microbiota composition and nutrient utilisation in broiler chickens fed sesame meal-based diets. Ital. J. Anim. Sci., 20: 2122–2130.
  43. Fernandes J.I.M., Horn D., Ronconi E.J., Buzim R., Lima F.K., Pazdiora D.A. (2019). Effects of phytase superdosing on digestibility and bone integrity of broilers. J. Appl. Poult. Res., 28: 390–398.
  44. Golzar Adabi S., Ceylan N., Ciftci I., Ceylan A. (2019). Response of growing chicks to supplementation of low protein diets with leucine, valine and glycine-glutamic acid. S. Afr. J. Anim. Sci., 49: 1047–1062.
  45. Gonzalez-Uarquin F., Kenéz Á., Rodehutscord M., Huber K. (2020a). Dietary phytase and myo-inositol supplementation are associated with distinct plasma metabolome profile in broiler chickens. Animal, 14: 549–559.
  46. Gonzalez-Uarquin F., Rodehutscord M., Huber K. (2020 b). Myo-inositol: its metabolism and potential implications for poultry nutrition –a review. Poult. Sci., 99: 893–905.
  47. Grynspan F., Cheryan M. (1983). Calcium phytate: effect of pH and molar ratio on in vitro solubility. J. Am. Oil Chem. Soc., 60: 1761–1764.
  48. Gulizia J.P., Bonilla S.M., Vargas J.I., Sasia S.J., Llamas-Moya S., Duong T., Pacheco W.J. (2023). The effects of phytase and a multicarbohydrase complex containing α-galactosidase on performance, processing yield, and nutrient digestibility in the broiler chicken. J. Appl. Anim. Res., 51: 308–322.
  49. Hamdi M., López-Vergé S., Manzanilla E.G., Barroeta A.C., Pérez J.F. (2015). Effect of different levels of calcium and phosphorus and their interaction on the performance of young broilers. Poult. Sci., 94: 2144–2151.
  50. Haug W., Lantzsch H.J. (1983). Sensitive method for the rapid determination of phytate in cereals and cereal products. J. Sci. Food. Agric., 34: 1423–1426.
  51. Hernandez J.R., Gulizia J.P., Adkins J.B., Rueda M.S., Haruna S.I., Pacheco W.J., Downs K.M. (2022). Effect of phytase level and form on broiler performance, tibia characteristics, and residual fecal phytate phosphorus in broilers from 1 to 21 days of age. Animals, 12: 1952.
  52. Hossain S., Hossain M.A., Akter N., Akter M. (2022). Effects of phytase super dosing on performance, plasma mineral contents and bone mineralization in broiler chicken. Int. Poult. Sci. J., 21: 1–9.
  53. Imari Z.K., Hassanabadi A., Nassiri Moghaddam H. (2020). Response of broiler chickens to calcium and phosphorus restriction: effects on growth performance, carcass traits, tibia characteristics and total tract retention of nutrients. Ital. J. Anim. Sci., 19: 929–939.
  54. INRA (Institute National de la Recherche Agronomique) (2002). Tables de composition et de valeur nutritive des matières premières destinées aux animaux d’élevage. INRA Ed. Paris, Cedex, France.
  55. Iqbal W., Yaseen M.A., Rahman M.A., Bhatti S.A., Rahman M.S., Yaqoob M.U., Ahmad F., Zahid M.U., Shoaib M. (2023). Effect of phytase supplementation on growth performance, mineral digestibility, and tibia calcium and phosphorus in broilers fed low phosphorus diets. Braz. J. Poult. Sci., 25: eRBCA–2023.
  56. Kaiza V.E., Yildiz M., Eldem V., Golzar Adabi S., Ofori-Mensah S. (2023). The effects of dietary microbial 6-phytase on growth parameters, intestinal morphometric properties and selected intestinal genes expression in rainbow trout (Oncorhynchus mykiss, Walbaum 1876). J. Anim. Physiol. Anim. Nutr., 107: 1517–1529.
  57. Khatibjoo A., Mahmoodi M., Fattahnia F., Akbari-Gharaei M., Shokri A.N., Soltani S. (2018). Effects of dietary short-and medium-chain fatty acids on performance, carcass traits, jejunum morphology, and serum parameters of broiler chickens. J. Appl. Anim. Res., 46: 492–498.
  58. Kim J.H., Pitargue F.M., Jung H., Han G.P., Choi H.S., Kil D.Y. (2017). Effect of superdosing phytase on productive performance and egg quality in laying hens. Asian-Australas. J. Anim. Sci., 30: 994–998.
  59. Kim S.W., Li W., Angel R., Proszkowiec-Weglarz M. (2018). Effects of limestone particle size and dietary Ca concentration on apparent P and Ca digestibility in the presence or absence of phytase. Poult. Sci., 97: 4306–4314.
  60. Kim S.W., Li W., Angel R., Plumstead P.W. (2019). Modification of a limestone solubility method and potential to correlate with in vivo limestone calcium digestibility. Poult. Sci., 98: 6837–6848.
  61. Krieg J., Borda-Molina D., Siegert W., Sommerfeld V., Chi Y.P., Taheri H.R., Feuerstein D., Camarinha-Silva A., Rodehutscord M. (2021). Effects of calcium level and source, formic acid, and phytase on phytate degradation and the microbiota in the digestive tract of broiler chickens. Anim. Microbiom., 3: 1–18.
  62. Kriseldi R., Walk C.L., Bedford M.R., Dozier W.A. (2021). Inositol and gradient phytase supplementation in broiler diets during a 6-week production period: 2. Effects on phytate degradation and inositol liberation in gizzard and ileal digesta contents. Poult. Sci., 100: 100899.
  63. Lawlor P.G., Lynch P.B., Caffrey P.J., James J O’Reilly J.J., O’Connell M.K. (2005). Measurements of the acid-binding capacity of ingredients used in pig diets. Ir. Vet. J., 58: 447–452.
  64. Lee S.A., Nagalakshmi D., Raju M.V., Rao S.V.R., Bedford M.R. (2017). Effect of phytase superdosing, myo-inositol and available phosphorus concentrations on performance and bone mineralisation in broilers. Anim. Nutr., 3: 247–251.
  65. Leeson S., Summers J.D. (2005). Commercial Poultry Nutrition. Third edition. Nottingham University Press, UK.
  66. Li J., Yuan J., Guo Y., Sun Q., Hu X. (2012). The influence of dietary calcium and phosphorus imbalance on intestinal NaPi-IIb and calbindin mRNA expression and tibia parameters of broilers. Asian-Australas. J. Anim. Sci., 25: 552–558.
  67. Li S.A., Jiang W.D., Feng L., Liu Y., Wu P., Jiang J., Kuang S.Y., Tang L., Tang W.N., Zhang Y.A., Yang J. (2018). Dietary myo-inositol deficiency decreased intestinal immune function related to NF-κB and TOR signaling in the intestine of young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol., 76: 333–346.
  68. Li W., Angel R., Kim S.W., Brady K., Yu S., Plumstead P.W. (2016). Impacts of dietary calcium, phytate, and nonphytate phosphorus concentrations in the presence or absence of phytase on inositol hexakisphosphate (IP6) degradation in different segments of broilers digestive tract. Poult. Sci., 95: 581–589.
  69. Li X., Zhang D., Bryden W.L. (2017). Calcium and phosphorus metabolism and nutrition of poultry: are current diets formulated in excess? Anim. Prod. Sci., 57: 2304–2310.
  70. Lim C.I., Choo H.J., Park J.H. (2024). Effect of phytase supplementation on performance, fecal excretion, and compost characteristics in broilers fed diets deficient in phosphorus and calcium. Anim. Sci. Technol., 66: 93.
  71. Lima G.S., Lima M.R., Gomes G.A., Cavalcante D.T., Guerra R.R., da Silva J.H.V., Cardoso A.S., Kaneko I.N., Costa F.G.P. (2021). Superdosing of bacterial phytase (EC 3.1. 3.26) in broiler diets with reduced levels of digestible amino acids. Livest. Sci., 253: 104714.
  72. Liu L., Li Q., Yang Y., Guo A. (2021). Biological function of short-chain fatty acids and its regulation on intestinal health of poultry. Front. Vet. Sci., 8: 736739.
  73. Liu S.B., Liao X.D., Lu L., Li S.F., Wang L., Zhang L.Y., Jiang Y., Luo X.G. (2017). Dietary non-phytate phosphorus requirement of broilers fed a conventional corn-soybean meal diet from 1 to 21 d of age. Poult. Sci., 96: 151–159.
  74. Lu H., Cowieson A.J., Wilson J.W., Ajuwon K.M., Adeola O. (2019). Extra-phosphoric effects of super dosing phytase on growth performance of pigs is not solely due to release of myo-inositol. J. Anim. Sci., 97: 3898–3906.
  75. Martínez-Vallespín B., Männer K., Ader P., Zentek J. (2022). Evaluation of high doses of phytase in a low-phosphorus diet in comparison to a phytate-free diet on performance, apparent ileal digestibility of nutrients, bone mineralization, intestinal morphology, and immune traits in 21-day-old broiler chickens. Animals, 12: 1955.
  76. McDowell L.R. (2003). Minerals in animal and human nutrition. Amsterdam, The Netherlands, Elsevier Science B.V., 2nd ed., 644 pp.
  77. Mello H.H.D.C., Gomes P.C., Rostagno H.S., Albino L.F.T., Rocha T.C.D., Almeida R.L.D., Calderano A.A. (2012). Dietary requirements of available phosphorus in growing broiler chickens at a constant calcium: available phosphorus ratio. Rev. Bras. de Zootec., 41: 2323–2328.
  78. Moita V.H.C., Duarte M.E., Kim S.W. (2021). Supplemental effects of phytase on modulation of mucosa-associated microbiota in the jejunum and the impacts on nutrient digestibility, intestinal morphology, and bone parameters in broiler chickens. Animals, 11: 3351.
  79. Moradi S., Abdollahi M.R., Moradi A., Jamshidi L. (2023). Effect of bacterial phytase on growth performance, nutrient utilization, and bone mineralization in broilers fed pelleted diets. Animals, 13: 1450.
  80. Morgan N.K. (2014). Quantification and alleviation of the antinutritional effects of phytate on poultry. Nottingham Trent University (United Kingdom).
  81. Mutucumarana R.K., Ravindran V., Ravindran G., Cowieson A.J. (2014). Measurement of true ileal digestibility of phosphorus in some feed ingredients for broiler chickens. J. Anim. Sci., 92: 5520–5529.
  82. Mutucumarana R.K., Ravindran V., Ravindran G., Cowieson A.J. (2015). Measurement of true ileal phosphorus digestibility in maize and soybean meal for broiler chickens: Comparison of two methodologies. Anim. Feed Sci. Technol., 206: 76–86.
  83. Nari N., Ghasemi H.A., Hajkhodadadi I., Farahani A.K. (2020). Intestinal microbial ecology, immune response, stress indicators, and gut morphology of male broiler chickens fed low-phosphorus diets supplemented with phytase, butyric acid, or Saccharomyces boulardii. Livest. Sci., 234: 103975.
  84. Naves L. de P., Rodrigues P.B., Bertechini A.G., Corrêa A.D., De Oliveira D.H., De Oliveira E.C., Duarte W.F., da Cunha M.R.R. (2014). Comparison of methodologies to quantify phytate phosphorus in diets containing phytase and excreta from broilers. Asian-Australas. J. Anim. Sci., 27: 1003–1012.
  85. Nolan K.B., Duffin P.A., Mc Weeny D.J. (1987). Effects of phytate on mineral bioavailability. In vitro studies on Mg2+, Ca2+, Fe3+, Cu2+ and Zn2+ (also Cd2+) solubilities in the presence of phytate. J. Sci. Food Agric., 40: 79–85.
  86. Novotny M., Sommerfeld V., Krieg J., Kühn I., Huber K., Rodehutscord M. (2023). Comparison of mucosal phosphatase activity, phytate degradation, and nutrient digestibility in 3-week-old turkeys and broilers at different dietary levels of phosphorus and phytase. Poult. Sci., 102: 102457.
  87. NRC (1994). Nutrient Requirements of Poultry. 9th ed. Washington: National Academies Press, Washington, DC.
  88. Oliveira D.H.D., Naves L.D.P., Nardelli N.B.D.S., Zangerônimo M.G., Rodrigues P.B. (2018). Ileal digestibility of calcium and phosphorus in broilers fed diets with different phytases and Ca: available P ratios. Pesqui. Agropecu. Bras., 53: 1222–1229.
  89. Proszkowiec-Weglarz M., Angel R. (2013). Calcium and phosphorus metabolism in broilers: Effect of homeostatic mechanism on calcium and phosphorus digestibility. J. Appl. Poult. Res., 22: 609–627.
  90. Ptak A., Bedford M.R., Świątkiewicz S., Żyła K., Jozefiak D. (2015). Phytase modulates ileal microbiota and enhances growth performance of the broiler chickens. PloS one, 10: e0119770.
  91. Raei H., Karimi Torshizi M.A., Sharafi M., Ahmadi H. (2021). Improving seminal quality and reproductive performance in male broiler breeder by supplementation of camphor. Theriogenology, 166: 1–8.
  92. Rousseau X., Valable A.S., Létourneau-Montminy M.P., Même N., Godet E., Magnin M., Narcy A. (2016). Adaptive response of broilers to dietary phosphorus and calcium restrictions. Poult. Sci., 95: 2849–2860.
  93. Sebastian S., Touchburn S.P., Chavez E.R., Lague P.C. (1996). The effects of supplemental microbial phytase on the performance and utilization of dietary calcium, phosphorus, copper, and zinc in broiler chickens fed corn-soybean diets. Poult. Sci., 75: 729–736.
  94. Selle P.H., Cowieson A.J., Ravindran V. (2009). Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livest. Sci., 124: 126–141.
  95. Selle P.H., Macelline S.P., Chrystal P.V., Liu S.Y. (2023). The contribution of phytate-degrading enzymes to chicken-meat production. Animals, 13: 603.
  96. Shafey T.M., McDonald M.W., Dingle J.G. (1991). Effects of dietary calcium and available phosphorus concentration on digesta pH and on the availability of calcium, iron, magnesium and zinc from the intestinal contents of meat chickens. Br. Poult. Sci., 32: 185–194.
  97. Shi H., Lopes T., Tompkins Y.H., Liu G., Choi J., Sharma M.K., Kim W.K. (2024). Effects of phytase supplementation on broilers fed with calcium and phosphorus-reduced diets, challenged with Eimeria maxima and Eimeria acervulina: Influence on growth performance, body composition, bone health, and intestinal integrity. Poult. Sci., 103: 103511.
  98. Smith K.A., Wyatt C.L., Lee J.T. (2019). Evaluation of increasing levels of phytase in diets containing variable levels of amino acids on male broiler performance and processing yields. J. Appl. Poult. Res., 28: 253–262.
  99. Smulikowska S., Czerwiński J., Mieczkowska A. (2010). Effect of an organic acid blend and phytase added to a rapeseed cake-containing diet on performance, intestinal morphology, caecal microflora activity and thyroid status of broiler chickens. J. Anim. Physiol. Anim. Nutr., 94: 15–23.
  100. Stas E.B., Tokach M.D., DeRouchey J.M., Goodband R.D., Woodworth J.C., Gebhardt J.T. (2022). Evaluation of the acid-binding capacity of ingredients and complete diets commonly used for weanling pigs. Transl. Anim. Sci., 6: txac104.
  101. Suttle N.F. (2010). Mineral nutrition of livestock. Wallingford, UK, CAB International, 4th ed., 587 pp.
  102. Tahir M., Shim M.Y., Ward N.E., Smith C., Foster E., Guney A.C., Pesti G.M. (2012). Phytate and other nutrient components of feed ingredients for poultry. Poult. Sci., 91: 928–935.
  103. Tamim N.M., Angel R., Christman M. (2004). Influence of dietary calcium and phytase on phytate phosphorus hydrolysis in broiler chickens. Poult. Sci., 83: 1358–1367.
  104. Tizziani T., Donzele R.F.M.D.O., Donzele J.L., Silva A.D., Muniz J.C.L., Jacob R.D.F., Brumano G., Albino L.F.T. (2019). Reduction of calcium levels in rations supplemented with vitamin D3 or 25-OH-D3 for broilers. Rev. Bras. de Zootec., 48: e20180253.
  105. Valable A.S., Narcy A., Duclos M.J., Pomar C., Page G., Nasir Z., Magnin M., Létourneau-Montminy M.P. (2018). Effects of dietary calcium and phosphorus deficiency and subsequent recovery on broiler chicken growth performance and bone characteristics. Animal, 12: 1555–1563.
  106. Viljoen J. (2001). Quality of feed phosphate supplements for animal nutrition. S. Afr. J. Anim. Sci., 2: 13–19.
  107. Walk C.L., Bedford M.R., McElroy A.P. (2012). Influence of limestone and phytase on broiler performance, gastrointestinal pH, and apparent ileal nutrient digestibility. Poult. Sci., 91: 1371–1378.
  108. Walk C.L., Bedford M.R., Santos T.S., Paiva D., Bradley J.R., Wladecki H., Honaker C., McElroy A.P. (2013). Extra-phosphoric effects of superdoses of a novel microbial phytase. Poult. Sci., 92: 719–725.
  109. Walk C.L., Santos T.T., Bedford M.R. (2014). Influence of superdoses of a novel microbial phytase on growth performance, tibia ash, and gizzard phytate and inositol in young broilers. Poult. Sci., 93: 1172–1177.
  110. Walk C.L., Wang Z., Wang S., Wu J., Sorbara J.O.B., Zhang J. (2021a). Determination of the standardized ileal digestible calcium requirement of male Arbor Acres Plus broilers from hatch to day 10 post-hatch. Poult. Sci., 100: 101364.
  111. Walk C.L., Romero L.F., Cowieson A.J. (2021 b). Towards a digestible calcium system for broiler chicken nutrition: a review and recommendations for the future. Anim. Feed Sci. Technol., 276: 114930.
  112. Walk C.L., Wang Z., Wang S., Sorbara J.O.B., Zhang J. (2022 a). Determination of the standardized ileal digestible calcium requirement of male Arbor Acres Plus broilers from day 11 to 24 post-hatch. Poult. Sci., 101: 101836.
  113. Walk C.L., Wang Z., Wang S., Sorbara J.O.B., Zhang J. (2022 b). Determination of the standardized ileal digestible calcium requirement of male Arbor Acres Plus broilers from day 25 to 42 post-hatch. Poult. Sci., 101: 102146.
  114. Walk C.L., Jenn P., Sorbara J.O.B., Gaytan-Perez I., Aureli R. (2022c). Research Note: Formulating broiler diets using digestible calcium significantly improved growth performance but reduced apparent ileal digestibility of calcium and phosphorus. Poult. Sci., 101: 102069.
  115. Walters H.G., Coelho M., Coufal C.D., Lee J.T. (2019). Effects of increasing phytase inclusion levels on broiler performance, nutrient digestibility, and bone mineralization in low-phosphorus diets. J. Appl. Poult. Res., 28: 1210–1225.
  116. Xu L., Li N., Farnell Y.Z., Wan X., Yang H., Zhong X., Farnell M.B. (2021). Effect of feeding a high calcium: Phosphorus ratio, phosphorus deficient diet on hypophosphatemic rickets onset in broilers. Agriculture, 11: 955.
  117. Yang Y.F., Xing G.Z., Li S.F., Shao Y.X., Zhang L.Y., Lin L.U., Luo X.G., Liao X.D. (2020). Effect of dietary calcium or phosphorus deficiency on bone development and related calcium or phosphorus metabolic utilization parameters of broilers from 22 to 42 days of age. J. Integr. Agric., 19: 2775–2783.
  118. Zaefarian F., Cowieson A.J., Pontoppidan K., Abdollahi M.R., Ravindran V. (2021). Trends in feed evaluation for poultry with emphasis on in vitro techniques. Anim. Nutr., 7: 268–281.
  119. Zaghari M., Avazkhanllo M., Ganjkhanlou M. (2015). Reevaluation of male broiler zinc requirement by dose-response trial using practical diet with added exogenous phytase. J. Agric. Sci. Technol., 17: 333–343.
  120. Zhang B., Coon C.N. (1997). The relationship of various tibia bone measurements in hens. Poult. Sci., 76: 1698–1701.
  121. Zhang L.H., He T.F., Hu J.X., Li M., Piao X.S. (2020). Effects of normal and low calcium and phosphorus levels and 25-hydroxycholecalciferol supplementation on performance, serum antioxidant status, meat quality, and bone properties of broilers. Poult. Sci., 99: 5663–5672.
  122. Zhao X., Guo Y., Guo S., Tan J. (2013). Effects of Clostridium butyricum and Enterococcus faecium on growth performance, lipid metabolism, and cecal microbiota of broiler chickens. Appl. Microbiol. Biotechnol., 97: 6477–6488.
DOI: https://doi.org/10.2478/aoas-2024-0107 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 929 - 943
Submitted on: Feb 3, 2024
|
Accepted on: Sep 25, 2024
|
Published on: Jul 24, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2025 Shahram Golzar Adabi, Hamid Raei, Necmettin Ceylan, Mohammad Amir Karimi Torshizi, Ismail Yavaş, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.