Have a personal or library account? Click to login
Effects of Fishmeal Replacement with Spirulina (Arthrospira platensis) and Sargassum ilicifolium Meal on Growth and Health Indices of Asian Seabass (Lates calcarifer) Juveniles Cover

Effects of Fishmeal Replacement with Spirulina (Arthrospira platensis) and Sargassum ilicifolium Meal on Growth and Health Indices of Asian Seabass (Lates calcarifer) Juveniles

Open Access
|Apr 2025

References

  1. Abdel-Tawwab M., Ahmad M. (2009). Live spirulina (Arthrospira platensis) as a growth and immunity promoter for Nile tilapia, Oreochromis niloticus (L.), challenged with pathogenic Aeromonas hydrophila. Aqua. Res., 40: 1037–1046.
  2. Adel M., Yeganeh S., Dadar M., Sakai M., Dawood M.A.O. (2016). Effects of dietary Spirulina platensis on growth performance, humoral and mucosal immune responses and disease resistance in juvenile great sturgeon (Huso huso Linnaeus, 1754). Fish. Shellfish Immunol., 56: 436–444.
  3. Aebi H. (1984). Catalase in vitro. Methods Enzymol., 272: 121–126.
  4. Alagawany M., Taha A.E., Noreldin A., El-Tarabily K.A., Abd El-Hack M.E. (2021). Nutritional applications of species of Spirulina and Chlorella in farmed fish: A review. Aquaculture, 542: 736841.
  5. Amaro H.M., Rato A., Matias D., Joaquim S., Machado J., Gonçalves J.F.M., Vaz-Pires P., Ozorio R.O.A., Pereira L.F., Azevedo I.C., Sousa-Pinto I., Guedes A.C. (2019). Alga diet formulation – An attempt to reduce oxidative stress during broodstock conditioning of Pacific oysters. Aquaculture, 500: 540–549.
  6. Anand P.S.S., Kohli M.P.S., Sujeet K., Dam Roy S., Sundaray J.K., Kumar S., Sinha A., Pailan G.H., Sukham M.K. (2013). Effect of dietary supplementation of periphyton on growth performance and digestive enzyme activities in Penaeus monodon. Aquaculture, 392–395: 59–68.
  7. Andrews S.R., Sahu N.P., Pal A.K., Mukherjee S.C., Kumar S. (2011). Yeast extract, brewer’s yeast and spirulina in diets for Labeo rohita fingerlings affect haemato-immunological responses and survival following Aeromonas hydrophila challenge. Res. Vet. Sci., 91: 103–109.
  8. Annamalai S.N., Das P., Thaher M.I.A., Abdul Quadir M., Khan S., Mahata C., Jabri H.A. (2021). Nutrients and energy digestibility of microalgal biomass for fish feed applications. Sustainability, 13: 13211.
  9. Association of Official Analytical Chemists (2000). Official Methods of Analysis of AOAC International. Gaithersburg Maryland, USA.
  10. Batista S., Pintado M., Marques A., Abreu H., Silva J.L., Jessen F., Tulli F., Valente L.M.P. (2020 a). Use of technological processing of seaweed and microalgae as strategy to improve their apparent digestibility coefficients in European seabass (Dicentrarchus labrax) juveniles. J. Applied Phycol., 32: 3429–3446.
  11. Batista S., Pereira R., Oliveira B., Baião L.F., Jessen F., Tulli F., Messina M., Silva J.L., Abreu H., Valente L.M.P. (2020 b). Exploring the potential of seaweed Gracilaria gracilis and microalga Nannochloropsis oceanica, single or blended, as natural dietary ingredients for European seabass Dicentrarchus labrax. J. Applied Phycol., 32: 2041–2059.
  12. Belal E., Khalafalla M., El-hais A.M.A. (2012). Use of spirulina (Arthrospira fusiformis) for promoting growth of Nile tilapia finger-lings, Africa. J. Microbiol. Res., 6: 6423–6431.
  13. Bergmeyer H.U. (1974). Methods of enzymatic analysis. Academic Press, Inc, New York, pp. 515–516.
  14. Bernfeld P. (1955). Amylases, alpha and beta. Methods Enzym., 1: 149–158.
  15. Bessey O.A., Lowry O.H., Brock M.J. (1946). Rapid coloric method for determination of alkaline phosphatase in five cubic millimeters of serum. J. Biol. Chem. 164: 321–329.
  16. Beutler E., Duron O., Kelly B.M. (1963). Improved method for the determination of blood glutathione. J. Lab. Clin. Med., 61: 882–890.
  17. Blaxhall P.C., Daisley K.W. (1973). Routine hematological methods for use fish with blood. J. Fish. Biol., 5: 771–781.
  18. Bradford M.M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.
  19. Cao S., Zhang P., Zou T. Fei S., Han D., Jin J., Liu H., Yang Y., Zhu X., Xie S. (2018). Replacement of fishmeal by spirulina Arthrospira platensis affects growth, immune related-gene expression in gibel carp (Carassius auratus gibelio var. CAS III), and its challenge against Aeromonas hydrophila infection. Fish. Shellfish Immunol., 79: 265–273.
  20. Castro I.A., Barroso L.P., Sinnecker P. (2005). Functional foods for coronary heart disease risk reduction: a meta-analysis using a multivariate approach. American J. Clinic. Nutr., 82: 32–40.
  21. Castro-Ruiz D., Mozanzadeh M.T., Fernandez-Mendez C., Andree K.B., García-Dávila C., Cahu C., Gisbert E., Darias M.J. (2019). Ontogeny of the digestive enzyme activity of the Amazonian pimelodid catfish Pseudoplatystoma punctifer (Castelnau, 1855). Aquaculture, 504: 210–218.
  22. Chen F., Leng Y., Lu Q., Zhou W. (2019). The application of microalgae biomass and bio-products as aquafeed for aquaculture. Algal Res., https://doi.org/10.1016/j.algal.2021.102541.
  23. Chen Z., Shen N., Wu X., Jia J., Wu Y., Chiba H., Hui S. (2023). Extraction and quantitation of phytosterols from edible brown seaweeds: optimization, validation, and application. Foods, 12: 244.
  24. Cherry P., O’Hara C., Magee P.J., Mc Sorley E.M., Allsopp P.J. (2019). Risks and benefits of consuming edible seaweeds. Nutr. Rev., 77: 307–329.
  25. Cian R.E., Bacchetta C., Rossi A., Cazenave J., Drago S.R. (2019). Red seaweed Pyropia columbina as antioxidant supplement in feed for cultured juvenile Pacú (Piaractus mesopotamicus). J. Applied Phycol., 31: 1455–1465.
  26. Colla L.M., Muccillo-Baisch A.L., Costa J.A.V. (2008). Spirulina platensis effects on the levels of total cholesterol, HDL and triacylglycerols in rabbits fed with a hypercholesterolemic diet. Brazil. Arch. Biol. Technol., 51: 405–411.
  27. Crane R.K., Boge G., Rigal A. (1979). Isolation of brush border membranes in vesicular form from the intestinal spiral valve of the small dogfish (Scyliorhinus canicula). Biochim. Biophys. Acta, 554: 264–267.
  28. Dacie J.V., Lewis S.M. (2009). Practical Hematology, 9th ed. Churchill Livingstone, London, 2001.
  29. Dvir I., Stark A.H., Chayoth R., Madar Z., Arad S.M. (2009). Hypocholesterolemic effects of nutraceuticals produced from the red microalga Porphyridium sp. in rats. Nutrients, 1: 156–167.
  30. Ellis A.E. (1990). Serum antiproteases in fish and lysozyme assays. In: Techniques in fish immunology, Stolen J.S., Fletcher T.C., Anderson D.P., Roberson B.S., Van Muiswinkel W.B., (eds). SOS Publications, Fair Haven, NJ, pp. 95–103.
  31. Faheem M., Jamal R., Nazeer N., Khaliq S., Hoseinifar S.H., Van Doan H., Paolucci M., (2022). Improving growth, digestive and antioxidant enzymes and immune response of juvenile grass carp (Ctenopharyngodon idella) by using dietary Spirulina platensis. Fishes, 7: 237.
  32. Ferreira M., Teixeira C., Abreu H., Silva J., Costas B., Kiron V., Valente L.M. (2021). Nutritional value, antimicrobial and anti-oxidant activities of micro- and macroalgae, single or blended, unravel their potential use for aquafeeds. J. Applied Phycol., 33: 3507–3518.
  33. Folin O., Ciocalteau V. (1929). Enzymatic assay of protease using casein as a substrate. J. Biol. Chem., 73: 627–650.
  34. Francis G., Makkar H.P.S., Becker K. (2001). Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199: 197–227.
  35. Future Market Insight (2021). Asian sea bass market-analysis, outlook, growth, trends, forecast. Future Market Insight. Available online at: https://www.futuremarketinsights.com/reports/sea-bass-market (accessed January 10, 2022).
  36. Ghanei-Motlagh R., Mohammadian T., Gharibi D. Khosravi M., Mahmoudi E., Zarea M., El-Matbouli M., Menanteau-Ledouble S. (2020). Quorum quenching probiotics modulated digestive enzymes activity, growth performance, gut microflora, haemato-biochemical parameters and resistance against Vibrio harveyi in Asian seabass (Lates calcarifer). Aquaculture, 531: 735874.
  37. Gisbert E., Nolasco H., Solovyev M. (2019). Towards the standardization of brush border purification and intestinal alkaline phosphatase quantification in fish with notes on other digestive enzymes. Aquaculture, 487: 102–108.
  38. Gora A.H., Sahu N.P., Sahoo S., Rehman S., Dar S.A., Agarwal A.I.D. (2018). Effect of dietary Sargassum wightii and its fucoidan-rich extract on growth, immunity, disease resistance and antimicrobial peptide gene expression in Labeo rohita. Inter. Aquac. Res., 10: 115–131.
  39. Hummel B.C. (1959). A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin. Can. J. Biochem. Physiol., 37: 1393–1399.
  40. Immanuel G., Sivagnanavelmurugan M., Balasubramanian V., Palavesam A. (2012). Sodium alginate from Sargassum wightii retards mortalities in Penaeus monodon postlarvae challenged with white spot syndrome virus. Dis. Aquatic Organ., 99: 187–196.
  41. Kok B., Malcorps W., Tlusty M.F., Eltholth M.M., Auchterlonie N.A., Little D.C., Harmsen R., Newton R.W., Davies S.J. (2020). Fish as feed: Using economic allocation to quantify the Fish In: Fish Out ratio of major fed aquaculture species. Aquaculture, 528: 735474.
  42. Li L., Liu H., Zhang P. (2022). Effect of spirulina meal supplementation on growth performance and feed utilization in fish and shrimp: A meta-analysis. Aquac. Nutr., 8517733.
  43. Ma M., Hu Q. (2023). Microalgae as feed sources and feed additives for sustainable aquaculture: Prospects and challenges. Rev. Aquac., 16: 1–18.
  44. Macias-Sancho J., Poersch L.H., Bauer W., Romano L.A., Wasielesky W., Tesser M.B. (2014). Fishmeal substitution with Arthrospira (Spirulina platensis) in a practical diet for Litopenaeus vannamei: Effects on growth and immunological parameters. Aquaculture, 426–427: 120–125.
  45. Macusi E.D., Cayacay M.A., Borazon E.Q., Sales A.C., Habib A., Fadli N., Santos M.D. (2023). Protein fishmeal replacement in aquaculture: A systematic review and implications on growth and adoption viability. Sustainability, 15: 12500.
  46. Matanjun P., Mohamed S., Muhammad K., Mustapha N.M. (2010). Comparison of cardiovascular protective effects of tropical seaweeds, Kappaphycus alvarezii, Caulerpa lentillifera, and Sargassum polycystum, on high-cholesterol/high-fat diet in rats. J. Med. Food., 13: 792–800.
  47. McCord J.M., Fridovich I. (1969). Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem., 244: 6049–6055.
  48. Meinita M.D.N., Harwanto D., Tirtawijaya G., Negara B.F.S.P., Sohn J.-H., Kim J.-S., Choi J.-S. (2021). Fucosterol of marine macroalgae: bioactivity, safety, and toxicity on organism. Marine Drugs., 19: 545.
  49. Mohammadiazarm H., Maniat M., Ghorbanijezeh K., Ghotbeddin N. (2021). Effects of spirulina powder (Spirulina platensis) as a dietary additive on Oscar fish, Astronotus ocellatus: assessing growth performance, body composition, digestive enzyme activity, immune-biochemical parameters, blood indices and total pigmentation. Aquac. Nutr., 27: 252–260.
  50. Mohan K., Ravichandran S., Muralisankar T., Uthayakumar V., Chandirasekar R., Seedevi P., Ramu A.G., Rajan D.K. (2019). Application of marine-derived polysaccharides as immunostimulants in aquaculture: A review of current knowledge and further perspectives. Fish. Shellfish Immunol., 86: 1177–1193.
  51. Mohtashemipour H., Mohammadian T., Mozanzadeh M.T., Mesbah M., Jangaran Nejad A. (2024). Dietary selenium nanoparticles improved growth and health indices in Asian seabass (Lates calcarifer) juveniles reared in high saline water. Aquac. Nutr., 7480824.
  52. Moreira A., Cruz S., Marques R., Cartaxana P. (2022). The underexplored potential of green macroalgae in aquaculture. Rev. Aquac., 14: 5–26.
  53. Morshedi V., Nafisi Bahabadi M., Sotoudeh E., Azodi M., Hafezieh M. (2018). Nutritional evaluation of Gracilaria pulvinata as partial substitute with fish meal in practical diets of barramundi (Lates calcarifer). J. App. Phycol., 30: 619–628.
  54. Morshedi V., Gamoori R., Yilmaz S., Hamedi S., Qasemi A. (2024). Evaluation of Sargassum ilicofolium and Padina australis macroalgae dietary supplementation in juvenile Asian bass (Lates calcarifer). J. Applied. Phycol., DOI: 10.1007/s10811-024-03190-5
  55. Mota C.S.C., Pinto O., Sá T., Ferreira M., Delerue-Matos C., Cabrita A.R.J., Almeida A., Abreu H., Silva J., Fonseca A.J.M., Valente L.M.P., Maia M.R.G. (2023). A commercial blend of macroalgae and microalgae promotes digestibility, growth performance, and muscle nutritional value of European seabass (Dicentrarchus labrax L.) juveniles. Front. Nutr., 10: 1165343.
  56. Mozanzadeh M.T., Safari O., Oosooli R., Mehrjooyan S., Najafabadi M.Z., Hoseini S.J., Saghavi H., Monem J. (2021). The effect of salinity on growth performance, digestive and antioxidant enzymes, humoral immunity and stress indices in two euryhaline fish species: yellowfin seabream (Acanthopagrus latus) and Asian seabass (Lates calcarifer). Aquaculture, 534: 736329.
  57. Nagappan S., Das P., AbdulQuadir M., Thaher M., Khan S., Mahata C., Al-Jabri H., Vatland A.K., Kumar G. (2021). Potential of microalgae as a sustainable feed ingredient for aquaculture. J. Biotechnol., 341: 1–20.
  58. Nagarajan D., Varjani S., Lee D-J., Chang J-S. (2021). Sustainable aquaculture and animal feed from microalgae – Nutritive value and techno-functional components. Renew. Sustain. Energy Rev., 150: 111549.
  59. Naylor R.L., Hardy R.W., Buschmann A.H., Bush S.R., Cao L., Klinger D.H., Little D.C., Lubchenco J., Shumway S.E., Troell M., (2021). A 20-year retrospective review of global aquaculture. Nature, 591: 551–563.
  60. Niccolai A., Chini Zittelli G., Rodolfi L., Biondi N., Tredici M.R. (2019). Microalgae of interest as food source: Biochemical composition and digestibility. Algal Res., 42: 101617.
  61. Norambuena F., Hermon K., Skrzypczyk V., Emery J.A., Sharon Y., Beard A., Turchini G.M., (2015). Algae in fish feed: performances and fatty acid metabolism in juvenile Atlantic salmon. PLoS One, 10: e0124042.
  62. Oliveira M.N., Ponte-Freitas A.L., Urano-Carvalho A.F., Taveres-Sampaio T.M., Farias D.F., Alves-Teixera D.I., Gouveia S.T., Gomes-Pereira J., Castro-Catanho de Sena M.M. (2009). Nutritive and non-nutritive attributes of washed-up seaweeds from the coast of Ceara, Brazil. Food Chem., 11: 254–259.
  63. Olvera-Novoa M., Domínguez-Cen L.J., Olivera-Castillo L.A, Martínez-Palacios C. (1998). Effect of the use of the microalga Spirulina maxima as fish meal replacement in diets for tilapia, Oreochromis mossambicus (Peters), fry. Aquac. Res., 29: 709–715.
  64. Øverland M., Mydland L.T., Skrede A. (2019). Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. J. Sci. Food. Agricult., 99: 13–24.
  65. Peixoto M.J., Salas-Leitón E., Pereira L.F., Queiroz A., Magalhães F., Pereira R., Abreu H., Reis P.A., Gonçalves J.F.M., de Ozório R.O.A. (2016). Role of dietary seaweed supplementation on growth performance, digestive capacity and immune and stress responsiveness in European seabass (Dicentrarchus labrax). Aquac. Rep., 3: 189–197.
  66. Prabu D.L., Sahu N.P., Pal A.K., Dasgupta S., Narendra A. (2016). Immunomodulation and interferon gamma gene expression in sutchi cat fish, Pangasianodon hypophthalmus: Effect of dietary fucoidan rich seaweed extract (FRSE) on pre and post challenge period. Aquac. Res., 47: 199–218.
  67. Rahman M., Mamun M.A.A., Rathore S.S., Nandi S.K., Kari Z.A., Wei L.Z., Tahiluddin A.B., Rahman M.M., Manjappa N.K., Hossain A., Nasren S., Alam M.M.M., Bottje W.G., Tellez-Isaías G., Kabir M.A. (2023). Effects of dietary supplementation of natural Spirulina on growth performance, hemato-biochemical indices, gut health, and disease resistance to Aeromonas hydrophila of stinging catfish (Heteropneustes fossilis) fingerling. Aquac. Rep., 32: 101727.
  68. Ren H.T., Zhao X.J., Huang Y., Xiong J.L. (2021). Combined effect of Spirulina and ferrous fumarate on growth parameters, pigmentation, digestive enzyme activity, antioxidant enzyme activity and fatty acids composition of Yellow River carp (Cyprinus carpio). Aquac. Rep., 21: 100776.
  69. Rombenso A., Araujo B., Li E. (2022). Recent advances in fish nutrition: Insights on the nutritional implications of modern formulations. Animals, 12: 1705.
  70. Rosas V.T., Bessonart M., Romano L.A., Tesser T.B. (2019 a). Fish-meal substitution for Arthrospira platensis in juvenile mullet (Mugil liza) and its effects on growth and non-specific immune parameters. Revista Colombiana de Ciencias Pecuarias, 32: 3–13.
  71. Rosas V.T., Monserrat J.M., Bessonart M., Magnone L., Romano L.A., Tesser M.B. (2019 b). Fish oil and meal replacement in mullet (Mugil liza) diet with Spirulina (Arthrospira platensis) and linseed oil. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol., 218: 46–54.
  72. Saadaoui I., Rasheed R., Aguilar A., Cherif M., Al Jabri H., Sayadi S., Manning S.R. (2021). Microalgal based feed: Promising alternative feedstocks for livestock and poultry production. J. Anim. Sci. Biotech., 12: 76.
  73. Sabzi E., Mohammadiazarm H., Salati A.P. (2023). Synergistic effects of Sargassum vulgare extract and lipid levels on growth performance, blood biochemical indices, immunological competence, and antioxidant capacity in juvenile common carp (Cyprinus carpio). Aquac. Rep., 33: 101829.
  74. Sagaram U.S., Gaikwad M.S., Nandru R., Dasgupta S. (2021). Microalgae as feed ingredients: recent developments on their role in immunomodulation and gut microbiota of aquaculture species. FEMS Microbiol. Let., 368: 71.
  75. Schleder D.D., da Rosa J.R., Guimarães A.M., Ramlov F., Maraschin M., Seiffert W.Q., do Nascimento Vieira F., Hayashi L., Andre-atta E.R. (2017). Brown seaweeds as feed additive for white-leg shrimp: effects on thermal stress resistance, midgut microbiology, and immunology. J. Appl. Phycol., 29: 2471–2477.
  76. Seyedalhosseini H., Salati A.P., Torfi Mozanzadeh M., Parish C.C., Shahriari A. (2023). Effects of dietary seaweeds (Gracilaria spp. and Sargassum spp.) on growth, feed utilization, and resistance to acute hypoxia stress in juvenile Asian seabass (Lates calcarifer). Aquac. Rep., 31: 101663.
  77. Shalata H.A., Bahattab O., Zayed M.M. Farrag F., Salah A.S., Al-Awthan Y.S., Ebied N.A. Mohamed R.A. (2021). Synergistic effects of dietary sodium butyrate and Spirulina platensis on growth performance, carcass composition, blood health, and intestinal histomorphology of Nile tilapia (Oreochromis niloticus). Aquac. Rep., 19: 100637.
  78. Shapawi R., Zamry A.A. (2016). Response of Asian seabass, Lates calcarifer juvenile fed with different seaweed-based diets. J. Applied. Anim. Res., 44: 121–125.
  79. Siddik M.A.B., Vatsos I.N., Rahman M.A., Pham H.D. (2022). Selenium-enriched Spirulina (SeE-SP) enhance antioxidant response, immunity, and disease resistance in juvenile Asian seabass, Lates calcarifer. Antioxidants, 11: 1572.
  80. Siddik M.A.B., Sørensen M., Islam S.M.M., Saha N., Rahman M.A., Francis D.S. (2024). Expanded utilisation of microalgae in global aquafeeds. Rev. Aquac., 16: 6–33.
  81. Siwicki A.K., Anderson D.P., Rumsey G.L. (1994). Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Vet. Immunol. Immunopathol., 41: 125–139.
  82. Soleimani S., Pirian K., Jeliani Z.Z., Arman M., Yousefzadi M. (2018). Bioactivity assessment of selected seaweeds from the Persian Gulf, Iran. J. Aqua. Ecol., 7: 25–38.
  83. Tietz N.W., Fiereck E.A. (1966). A specific method for serum lipase determination. Clin. Chim. Acta., 13: 352–358.
  84. Turchini G.M, Trushenski J.T., Glencross B.D. (2019). Thoughts for the future of aquaculture nutrition: Realigning perspectives to reflect contemporary issues related to judicious use of marine resources in aquafeeds. North Am. J. Aquac., 81: 13–39.
  85. Valente L.M.P., Cabrita A.R.J., Maia M.R.G., Valente I.M., Engrola S., Fonseca A.J.M., Ribeiro D.M., Lordelo M., Martins C.F., Cunha L.F., Almeida A.M., Freire J.P.B. (2021). Microalgae as feed ingredients for livestock production and aquaculture. In: Microalgae, Galanakis C.M. (ed.). Academic Press, pp. 239–312.
  86. Velasquez S.F., Chan M.A., Abisado R.G., Traifalgar R.F.M., Tayamen M.M., Maliwat G.C.F., Ragaza J.A. (2016). Dietary Spirulina (Arthrospira platensis) replacement enhances performance of juvenile Nile tilapia (Oreochromis niloticus). J. App. Phycol., 28: 1023–1030.
  87. Vijayaram S., Ringø E., Ghafarifarsani H., Hoseinifar S.H., Ahani S., Chou C.-C. (2024). Use of algae in aquaculture: A review. Fishes, 9: 63.
  88. Vizcaíno A.J., Mendes S.I., Varela J.L., Ruiz-Jarabo I., Rico R., Figueroa F.L., Abdala R., Moriñigo M.Á., Mancera J.M., Alarcón F.J. (2016). Growth, tissue metabolites and digestive functionality in Sparus aurata juveniles fed different levels of macroalgae, Gracilaria cornea and Ulva rigida. Aquac. Res., 47: 3224–3238.
  89. Wan A.H.L., Davies S.J., Soler-Vila A., Fitzgerald R., Johnson M.P. (2019). Macroalgae as a sustainable aquafeed ingredient. Rev. Aquac., 11: 458–492.
  90. Wells M.L., Potin P., Craigie J.S., Raven J.A., Merchant S.S., Helli-well K.E., Smith A.G., Camire M.E., Brawley S.H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. J. App. Phycol., 29: 949–82.
  91. Wiegertjes G.F., Stet R.M., Parmentier H.K., van Muiswinkel W.B. (1996). Immunogenetics of disease resistance in fish: A comparative approach. Develop. Comp. Immunol., 20: 365–381.
  92. Wu B., Huang L., Chen J., Zhang Y., Chen X., Wu C., Deng X., Gao J., He J. (2021). Effects of feeding frequency on growth performance, feed intake, metabolism and expression of fgf21 in grass carp (Ctenopharyngodon idellus). Aquaculture, 545: 737196.
  93. Xu Y., Ye J., Zhou D., Su L. (2020). Research progress on applications of calcium derived from marine organisms. Sci. Rep., 10: 18425.
  94. Yeganeh S., Teimouri M., Amirkolaie A.K. (2015). Dietary effects of Spirulina platensis on hematological and serum biochemical parameters of rainbow trout (Oncorhynchus mykiss). Res. Vet. Sci., 101: 84–88.
  95. Yong T.C., Bueno Galaz G., Shapawi R. (2017). Effects of dietary inclusion of Spirulina meal on growth and hematological parameters of cultured Asian sea bass, Lates calcarifer. Borneo J. Marine Sci. Aquacult., 1: 1–6.
  96. Yu W., Wen G., Lin H., Yang Y., Huang X., Zhou C., Zhang Z., Duan Y., Huang Z., Li T. (2018). Effects of dietary Spirulina platensis on growth performance, hematological and serum biochemical parameters, hepatic antioxidant status, immune responses and disease resistance of coral trout Plectropomus leopardus (Lacepede, 1802), Fish Shellfish. Immunol., 74: 649–655.
  97. Zeynali M., Nafisi Bahabadi M., Morshedi V., Ghasemi A., Mozanzadeh M.T. (2020). Replacement of dietary fishmeal with Sargassum ilicifolium meal on growth, innate immunity and immune gene mRNA transcript abundance in Lates calcarifer juveniles. Aquac. Nutr., 26: 1657–1668.
  98. Zhang C. (1994). The effects of polysaccharide and phycocyanin from Spirulina platensis variety on peripheral blood and hematopoietic system of bone marrow in mice. Proc. Second Asia-Pacific Conference on Alga Biotechnology, p. 58.
  99. Zhang F., Man Y.B., Mo W.Y., Wong M.H. (2020). Application of Spirulina in aquaculture: a review on wastewater treatment and fish growth. Rev. Aquac., 12: 582–599.
DOI: https://doi.org/10.2478/aoas-2024-0099 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 709 - 718
Submitted on: May 24, 2024
Accepted on: Sep 3, 2024
Published on: Apr 24, 2025
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Takavar Mohammadian, Mansour Torfi Mozanzadeh, Parva Mousavi, Mehrzad Mesbah, Mohammad Khosravi, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.