References
- Abbas H., Soliman W., Elgendy M.Y., Youins N.A., Abu-Elala N.M. (2022). Insight on the potential microbial causes of summer mortality syndrome in the cultured Nile tilapia (Oreochromis niloticus). Egypt J. Aquat. Biol. Fisher., 26.
- Abd El Hakim Y., Neamat-Allah β-glucan A.N., Baeshen M., Ali H.A. (2019). Immune-protective, antioxidant and relative genes expression impacts of β-glucan against fipronil toxicity in Nile tilapia, Oreochromis niloticus. Fish Shellfish. Immunol., 94: 427–433.
- Abdel-Daim M.M., Eissa I.A., Abdeen A., Abdel-Latif H.M., Ismail M. (2019). Lycopene and resveratrol ameliorate zinc oxide nanoparticles-induced oxidative stress in Nile tilapia, Oreochromis niloticus. Environ. Toxicol. Pharmacol., 69: 44–50.
- Abdel-Tawwab M., Hagras A.E., Elbaghdady H.A.M., Monier M.N. (2014). Dissolved oxygen level and stocking density effects on growth, feed utilization, physiology, and innate immunity of Nile tilapia, Oreochromis niloticus. J. Appl. Aquacult., 26: 340–355.
- Abdelhamid F.M., Elshopakey G.E., Aziza A.E. (2020). Ameliorative effects of dietary Chlorella vulgaris and β-glucan against diazinon-induced toxicity in Nile tilapia (Oreochromis niloticus). Fish Shellfish. Immunol., 96: 213–222.
- Abdelrhman A.M., Ashour M., Al-Zahaby M.A., Sharawy Z.Z., Nazmi H. (2022). Effect of polysaccharides derived from brown macroalgae Sargassum dentifolium on growth performance, serum biochemical, digestive histology and enzyme activity of hybrid red tilapia. Aquacult. Rep., 25: 101212.
- Abo-Taleb H.A., Zeina F.A., Ashour M., Mabrouk M.M., Sallam E.A. (2020). Isolation and cultivation of the freshwater amphipod Gammarus pulex (Linnaeus, 1758), with an evaluation of its chemical and nutritional content. Egypt J. Aquat. Biol. Fish., 24: 69–82.
- Aboseif A.M., Flefil N.S., Taha M.K., Tahoun U.M., Mola H.R.A. (2022). Influence of dietary C: N: P ratios on Nile tilapia Oreochromis niloticus growth performance and formation of water biotic communities within a biofloc system containment. Aquacult. Rep., 24: 101136.
- AbouShabana N., AbdelKader R., Abdel-RahmanS., Abdel-Gawad H., Abdel-Galil A. (2018). Enhancement of broodstock health and maternal immunity in gilthead seabream (Sparus aurata L.) using ExcelMOS®. Fish Physiol. Biochemist., 44: 1241–1251.
- Adel M., Dadar M., Khajavi S.H., Pourgholam R., Karimí B. (2017). Hematological, biochemical and histopathological changes in Caspian brown trout (Salmo trutta caspius Kessler, 1877) following exposure to sublethal concentrations of chlorpyrifos. Tox Revi., 36: 73–79.
- Ahmadifar E., Akrami R., Razeghi Mansour M., Keramat Amirkolaie A. (2015). Effect of dietary supplementation of mannan oligosaccharide on growth performance and salinity tolerance in kutum, Rutilus kutum (Kamensky, 1901) fry. J. Appl. Ichthyol., 31: 12452.
- Ahmadifar E., Moghadam M.S., Dawood M.O., Hoseinifar S.H. (2019). Lactobacillus fermentum and/or ferulic acid improved the immune responses, antioxidative defence and resistance against Aeromonas hydrophila in common carp (Cyprinus carpio) finger-lings. Fish Shellfish. Immunol., 94: 916–923.
- Ahmadifar E., Mohammadzadeh S., Kalhor N., Yousefi M., Moghadam M.S., Naraballobh N., Ahmadifar M., Hoseinifar S.H., Van Doan H. (2022). Cornelian cherry (Cornus mas L.) fruit extract improves growth performance, disease resistance, and serum immune-and antioxidant-related gene expression of common carp (Cyprinus carpio). Aquaculture, 558: 738372.
- Ahmed M.N., Flefil S.N., Tayel I.S., Mahmoud A.S., Soliman A.-G. (2019). Biological treatment of ammonia using biofloc system for Oreochromis niloticus fish. Egypt J. Aquat. Biol. Fisher., 23: 639–657.
- Ai Q., Mai K., Zhang L., Tan B., Zhang W. (2007). Effects of dietary β-1, 3 glucan on innate immune response of large yellow croaker, Pseudosciaena crocea. Fish Shellfish. Immunol., 22: 394–402.
- Alprol A.E., Heneash A.M.M., Ashour M., Abualnaja K.M., Alhashmialameer D. (2021). Potential applications of Arthrospira platensis lipid-free biomass in bioremediation of organic dye from industrial textile effluents and its influence on marine rotifer (Brachionus plicatilis). Materials, 14.
- Amphan S., Unajak S., Printrakoon C., Areechon N. (2019). Feeding-regimen of β-glucan to enhance innate immunity and disease resistance of Nile tilapia, Oreochromis niloticus Linn., against Aeromonas hydrophila and Flavobacterium columnare. Fish Shellfish. Immunol., 87: 120–128.
- Anderson D., Siwicki A. (1995). Basic hematology and serology for fish health programs. Fish Health Section, Asian Fisheries Society, pp. 185–202.
- AOAC (2003). Official methods of analysis of the Association of Official Analytical Chemists. The Association.
- Aoe S., Ichinose Y., Kohyama N., Komae K., Takahashi A. (2017). Effects of high β-glucan barley on visceral fat obesity in Japanese individuals: A randomized, double-blind study. Nutrition, 42: 1–6.
- APHA (1998). Standard methods for the examination of water and waste water, 19th edition. APHA, Washington DC, USASS. Apino R.M., Emplonuevo R.M., Vera Cruz E.M. (2022). Stress responses of red tilapia (Oreochromis spp.) exposed to blue and red-light emitting diode (Led). Egypt Acade J. Biol. Sci., B. Zool., 14: 159–167.
- Asadi M., Mirvaghefei A., Nematollahi M., Banaee M., Ahmadi K. (2012). Effects of watercress (Nasturtium nasturtium) extract on selected immunological parameters of rainbow trout (Oncorhynchus mykiss). Open Vet. J., 2: 32–39.
- Awad E., Awaad A. (2017). Role of medicinal plants on growth performance and immune status in fish. Fish Shellfish. Immunol., 67: 40–54.
- Barros M.M., Falcon D.R., Orsi R.O., Pezzato L.E., Fernandes Junior A.C. (2015). Immunomodulatory effects of dietary β-glucan and vitamin C in Nile tilapia, Oreochromis niloticus L., subjected to cold-induced stress or bacterial challenge. J. World Aquacult. Soc., 46: 363–380.
- Bligh E.G., Dyer W.J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37: 911–917.
- Brett J. (1973). Energy expenditure of sockeye salmon, Oncorhynchus nerka, during sustained performance. J. Fisher Board Canada, 30: 1799–1809.
- Cai W.-Q., Li S.-F., Ma J.-Y. (2004). Diseases resistance of Nile tilapia (Oreochromis niloticus), blue tilapia (Oreochromis aureus) and their hybrid (female Nile tilapia× male blue tilapia) to Aeromonas sobria. Aquaculture, 229: 79–87.
- Ching J.J., Shuib A.S., Abdul Majid N., Mohd Taufek N. (2021). Immunomodulatory activity of β-glucans in fish: Relationship between β-glucan administration parameters and immune response induced. Aquacult. Res., 52: 1824–1845.
- Cuesta A., Vargas-Chacoff L., García-López A., Arjona F., Martínez-Rodríguez G. (2007). Effect of sex-steroid hormones, testosterone and estradiol, on humoral immune parameters of gilthead seabream. Fish Shellfish. Immunol., 23: 693–700.
- Davis A., Maney D., Maerz J. (2008). The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct. Ecol., 22: 760–772.
- Dawood M.A., Eweedah N.M., Elbialy Z.I., Abdelhamid A.I. (2020 a). Dietary sodium butyrate ameliorated the blood stress biomarkers, heat shock proteins, and immune response of Nile tilapia (Oreochromis niloticus) exposed to heat stress. J. Therm. Biol., 88: 102500.
- Dawood M.A., Abdel-Razik N.I., Gewaily M.S., Sewilam H., Paray B.A. (2020 b). β-Glucan improved the immunity, hepato-renal, and histopathology disorders induced by chlorpyrifos in Nile tilapia. Aquacult. Rep., 18: 100549.
- Del Rio-Zaragoza O., Fajer-Ávila E., Almazán-Rueda P. (2011). Influence of β-glucan on innate immunity and resistance of Lutjanus guttatus to an experimental infection of dactylogyrid monogeneans. Parasite Immunol., 33: 483–494.
- Demers N.E., Bayne C.J. (1997). The immediate effects of stress on hormones and plasma lysozyme in rainbow trout. Develop Comp. Immunol., 21: 363–373.
- Do Huu H., Sang H.M., Thuy N.T.T. (2016). Dietary β-glucan improved growth performance, Vibrio counts, haematological parameters and stress resistance of pompano fish, Trachinotus ovatus Linnaeus, 1758. Fish Shellfish. Immunol., 54: 402–410.
- Dou X., Huang H., Li, Y., Deng J., Tan B. (2023). Effects of dietary β-glucan on growth rate, antioxidant status, immune response, and resistance against Aeromonas hydrophila in genetic improvement of farmed tilapia (GIFT, Oreochromis niloticus). Aquacult. Rep., 29: 101480.
- Duan Y., Zhang Y., Don H., Wang Y., Zhang J. (2017). Effect of the dietary probiotic Clostridium butyricum on growth, intestine anti-oxidant capacity and resistance to high temperature stress in kuruma shrimp Marsupenaeus japonicus. J. Therm. Biol., 66: 93–100.
- Duncan D.P. (1955). Multiple range and multiple F test. Biometrics, 11: 1–42.
- Elmowalid G.A., Ghonimi W.A., Abd Allah H.M., Abdallah H., El-Murr A. (2023). β-1,3-glucan improved the health and immunity of juvenile African catfish (Clarias gariepinus) and neutralized the histological changes caused by lead and fipronil pollutants. BMC Vet. Res., 19: 1–13.
- Elsheshtawy A., Yehia N., Elkemary M., Soliman H. (2019). Investigation of Nile tilapia summer mortality in Kafr El-Sheikh governorate, Egypt. Gen. Aquat. Org., 3: 17–25.
- Fath El-Bab A.F., Majrashi K.A., Sheikh H.M., Shafi M.E., El-Ratel I.T. (2022). Dietary supplementation of Nile tilapia (Oreochromis niloticus) with β-glucan and/or Bacillus coagulans: Synergistic impacts on performance, immune responses, redox status and expression of some related genes. Front. Vet. Sci., 9: 1011715.
- Fazio F., Saoca C., Costa G., Zumbo A., Piccione G. (2019). Flow cytometry and automatic blood cell analysis in striped bass Morone saxatilis (Walbaum, 1792): A new hematological approach. Aquaculture, 513: 734398.
- Femi-Oloye O.P., Owoloye A., Olatunji-Ojo A.M., Abiodun A.C., Adewumi B. (2020). Effects of commonly used food additives on haematological parameters of Wistar rats. Heliyon, 6.
- Fuchs V., Schmidt J., Slater M., Zentek J., Buck B. (2015). The effect of supplementation with polysaccharides, nucleotides, acidifiers and Bacillus strains in fish meal and soy bean based diets on growth performance in juvenile turbot (Scophthalmus maximus). Aquaculture, 437: 243–251.
- Glasser L., Fiederlein R.L. (1990). The effect of various cell separation procedures on assays of neutrophil function: a critical appraisal. Am. J. Clin. Pathol., 93: 662–669.
- Goda A.M.-S., Aboseif A.M., Mohammedy E.Y., Taha M.K., Mansour A.A. (2023). Earthen pond-based floating beds for rice-fish co-culture as a novel concept for climate adaptation, water efficiency improvement, nitrogen and phosphorus management. Aquaculture, 740215.
- Helal M.A., Abdelaty S.B., Elokaby A.M., Abou Shabana M., Essa A.N.M. (2020). Improved technological innovation and management aspects in the Nile tilapia, Oreochromis niloticus, seed production. Egypt J. Aquat. Biol. Fisher., 24: 609–622.
- Hong-Bo L., Ma Q., Zhang M.-L., Limbu S.M., Chen L.-Q. (2018). The comparisons in protective mechanisms and efficiencies among dietary α-lipoic acid, β-glucan and L-carnitine on Nile tilapia infected by Aeromonas hydrophila. Fish Shellfish. Immunol., 86: 785–793.
- Hoseinifar S.H., Mirvaghefi A., Merrifield D.L. (2011). The effects of dietary inactive brewer’s yeast Saccharomyces cerevisiae var. ellipsoideus on the growth, physiological responses and gut micro-biota of juvenile beluga (Huso huso). Aquaculture, 318: 90–94.
- Hoseinifar S.H., Roosta Z., Hajimoradloo A.,Vakili F. (2015). The effects of Lactobacillus acidophilus as feed supplement on skin mucosal immune parameters, intestinal microbiota, stress resistance and growth performance of black swordtail (Xiphophorus helleri). Fish Shellfish. Immunol., 42: 533–538.
- Huang C.-W., Chien Y.-S., Chen Y.-J., Ajuwon K.M., Mersmann H.M. (2016). Role of n-3 polyunsaturated fatty acids in ameliorating the obesity-induced metabolic syndrome in animal models and humans. Int. J. Mol. Sci., 17: 1689.
- Ji L., Sun G., Li J., Wang Y., Du Y. (2017). Effect of dietary β-glucan on growth, survival and regulation of immune processes in rainbow trout (Oncorhynchus mykiss) infected by Aeromonas salmonicida. Fish Shellfish. Immunol., 64: 56–67.
- Jung-Schroers V., Harris S., Adamek M., Jung A., Steinhagen D. (2019). More is not always better-the influence of different concentrations of dietary β-glucan on the intestinal microbiota of tin-foil barb (Barbonymus schwanenfeldii). Bull. Europ. Assoc. Fish Pathol., 39: 122–132.
- Kamilya D., Maiti T., Joardar S., Mal B. (2006). Adjuvant effect of mushroom glucan and bovine lactoferrin upon Aeromonas hydrophila vaccination in catla, Catla catla (Hamilton). J. Fish Dis., 29: 331–337.
- Khanjani M.H., Sharifinia M., Ghaedi G. (2021). β-glucan as a promising food additive and immunostimulant in aquaculture industry. Ann. Anim. Sci., 22: 817–827.
- Kiron V., Kulkarni A., Dahle D., Lokesh J., Elvebo O. (2016). Recognition of purified beta 1, 3/1, 6 glucan and molecular signalling in the intestine of Atlantic salmon. Dev. Comp. Immunol., 56: 57–66.
- Koch J.F.A., de Oliveira C.A.F., Zanuzzo F.S. (2021). Dietary β-glucan (MacroGard®) improves innate immune responses and disease resistance in Nile tilapia regardless of the administration period. Fish Shellfish. Immunol., 112: 56–63.
- Lauriano E., Pergolizzi S., Aragona M., Montalbano G., Guerrera M. (2019). Intestinal immunity of dogfish Scyliorhinus canicula spiral valve: A histochemical, immunohistochemical and confocal study. Fish Shellfish. Immunol., 87: 490–498.
- Lee H.C., Yu W.T., Guo Y.R., Huang S.Y. (2017). β-Glucan, but not Lactobacillus plantarum P-8, inhibits lipid accumulation through selected lipid metabolic enzymes in obese rats. J. Food Biochem., 41: e12336.
- Lin S., Pan Y., Luo L., Luo L. (2011). Effects of dietary β-1,3-glucan, chitosan or raffinose on the growth, innate immunity and resistance of koi (Cyprinus carpio koi). Fish Shellfish. Immunol., 31: 788–794.
- López N., Cuzon G., Gaxiola G., Taboada G., Valenzuela M. (2003). Physiological, nutritional, and immunological role of dietary β 1-3 glucan and ascorbic acid 2-monophosphate in Litopenaeus vannamei juveniles. Aquaculture, 224: 223–243.
- Lu K.-L., Xu W.-N., Li J.-Y., Li X.-F., Huang G.-Q. (2013). Alterations of liver histology and blood biochemistry in blunt snout bream Megalobrama amblycephala fed high-fat diets. Fish. Sci., 79: 661–671.
- Mabrouk M.M., Ashour M., Labena A., Zaki M.A.A., Abdelhamid A.F. (2022). Nanoparticles of Arthrospira platensis improves growth, antioxidative and immunological responses of Nile tilapia (Oreochromis niloticus) and its resistance to Aeromonas hydrophila. Aquacult. Res., 53: 125–135.
- Mahmoud H., Dawood M.A., Assar M.H., Ijiri D., Ohtsuka A. (2019). Dietary Moringa oleifera improves growth performance, oxidative status, and immune related gene expression in broilers under normal and high temperature conditions. J. Therm. Biol., 82: 157–163.
- Medagoda N., Chotikachinda R., Hasanthi M., Lee K.-J. (2023). Dietary supplementation of a mixture of nucleotides, β-glucan and vitamins C and E improved the growth and health performance of olive flounder, Paralichthys olivaceus. Fishes, 8: 302.
- Medri V., Pereira G., Leonhardt J. (2000). Growth of Nile tilapia Oreochromis niloticus fed with different levels of alcohol yeast. Rev. Bras. Biol., 60: 113–121.
- Mills S., Spurlock M., Smith D. (2003). β-Adrenergic receptor sub-types that mediate ractopamine stimulation of lipolysis. J. Anim. Sci., 81: 662–668.
- Mohebbi A., Nematollahi A., Dorcheh E.E., Asad F.G. (2012). Influence of dietary garlic (Allium sativum) on the antioxidative status of rainbow trout (Oncorhynchus mykiss). Aquacult. Res., 43: 1184–1193.
- Munir M.B., Hashim R., Manaf M.S.A., Nor S.A.M. (2016). Dietary prebiotics and probiotics influence the growth performance, feed utilisation, and body indices of snakehead (Channa striata) finger-lings. Trop. Life Sci. Res., 27: 111.
- Nawaz A., Javaid A.B., Irshad S., Hoseinifar S.H., Xiong H. (2018). The functionality of prebiotics as immunostimulant: Evidences from trials on terrestrial and aquatic animals. Fish Shellfish. Immunol., 76: 272–278.
- Owatari M.S., da Silva L.R., Ferreira G.B., Rodhermel J.C.B., de Andrade J.I.A. (2022). Body yield, growth performance, and haematological evaluation of Nile tilapia fed a diet supplemented with Saccharomyces cerevisiae. Anim. Feed Sci. Technol., 293: 115453.
- Petit J., Wiegertjes G.F. (2016). Long-lived effects of administering β-glucans: Indications for trained immunity in fish. Dev. Comp. Immunol., 64: 93–102.
- Pilarski F., de Oliveira C.A.F., de Souza F.P.B.D., Zanuzzo F.S. (2017). Different β-glucans improve the growth performance and bacterial resistance in Nile tilapia. Fish Shellfish. Immunol., 70: 25–29.
- Racicot J., Gaudet M., Leray C. (1975). Blood and liver enzymes in rainbow trout (Salmo gairdneri Rich.) with emphasis on their diagnostic use: Study of CCl4 toxicity and a case of Aeromonas infection. J. Fish Biol., 7: 825–835.
- Ran C., Huang L., Liu Z., Xu L., Yang Y. (2015). A comparison of the beneficial effects of live and heat-inactivated baker’s yeast on Nile tilapia: suggestions on the role and function of the secretory metabolites released from the yeast. Plos One, 10:e0145448.
- Reitman S., Frankel S. (1957). A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol., 28: 56–63.
- Ringø E., Olsen R., Gifstad T., Dalmo R., Amlund H., Hemre G.-I., Bakke A.M. (2010). Prebiotics in aquaculture: a review. Aquacult. Nutr., 16: 117–136.
- Robbins K.R., Norton H.W., Baker D.H. (1979). Estimation of nutrient requirements from growth data. J. Nutr., 109: 1710–1714.
- Rochman C.M., Hoh E., Kurobe T., Teh S.J. (2013). Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep., 3: 1–7.
- Rodrigues M.V., Zanuzzo F.S., Koch J.F.A., de Oliveira C.A.F., Sima P. (2020). Development of fish immunity and the role of β-glucan in immune responses. Molecules, 25: 5378.
- Rufchaie R., Hoseinifar S.H. (2014). Effects of dietary commercial yeast glucan on innate immune response, hematological parameters, intestinal microbiota and growth performance of white fish (Rutilus kutum) fry. Croatian J. Fisher: Ribarstvo, 72: 156–163.
- Sarhadi I., Alizadeh E., Ahmadifar E., Adineh H., Dawood M.O. (2020). Skin mucosal, serum immunity and antioxidant capacity of common carp (Cyprinus carpio) fed artemisia (Artemisia annua). Ann. Anim. Sci., 20: 1011–1027.
- Saurabh S., Sahoo P. (2008). Lysozyme: an important defence molecule of fish innate immune system. Aquacult. Res., 39: 223–239.
- Sealey W., Barrows F., Hang A., Johansen K., Overturf K. (2008). Evaluation of the ability of barley genotypes containing different amounts of β-glucan to alter growth and disease resistance of rainbow trout Oncorhynchus mykiss. Anim. Feed Sci. Technol., 141: 115–128.
- Selim K.M., Reda R.M. (2015). Beta-glucans and mannan oligosaccharides enhance growth and immunity in Nile tilapia. North Am. J. Aquacult., 77: 22–30.
- Sharawy Z.Z., Ashour M., Labena A. (2022). Effects of dietary Arthrospira platensis nanoparticles on growth performance, feed utilization, and growth-related gene expression of Pacific white shrimp, Litopenaeus vannamei. Aquaculture, 551: 737905.
- Shelby R.A., Lim C., Yildirim-Aksoy M., Welker T.L., Klesius P.H. (2009). Effects of yeast oligosaccharide diet supplements on growth and disease resistance in juvenile Nile tilapia, Oreochromis niloticus. J. Appl. Aquacult., 21: 61–71.
- Suvarna K.S., Layton C., Bancroft J.D. (2018). Bancroft’s theory and practice of histological techniques. Elsevier.
- Swain B., Campodonico V.A., Curtiss III R. (2023). Recombinant attenuated Edwardsiella piscicida vaccine displaying regulated lysis to confer biological containment and protect catfish against edwardsiellosis. Vaccines, 11: 1470.
- Tian J., Yang Y., Du X., Xu W., Zhu B. (2023). Effects of dietary soluble β-1,3-glucan on the growth performance, antioxidant status, and immune response of the river prawn (Macrobrachium nipponense). Fish Shellfish. Immunol., 138: 108848.
- Uribe C., Folch H., Enríquez R., Moran G. (2011). Innate and adaptive immunity in teleost fish: a review. Vet. Med., 56: 486–503.
- Van Doan H., Hoseinifar S.H., Sringarm K., Jaturasitha S., Khamlor T. (2019). Effects of elephant’s foot (Elephantopus scaber) extract on growth performance, immune response, and disease resistance of Nile tilapia (Oreochromis niloticus) fingerlings. Fish Shellfish. Immunol., 93: 328–335.
- Wang Y. (2011). Use of probiotics Bacillus coagulans, Rhodopseudomonas palustris and Lactobacillus acidophilus as growth promoters in grass carp (Ctenopharyngodon idella) fingerlings. Aquacult. Nutr., 17: e372–e378.
- Welker T.L., Lim C., Yildirim-Aksoy M., Shelby R., Klesius P.H. (2007). Immune response and resistance to stress and Edwardsi-ella ictaluri challenge in channel catfish, Ictalurus punctatus, fed diets containing commercial whole-cell yeast or yeast subcomponents. J. World Aquacult. Soc., 38: 24–35.
- Welker T.L., Lim C., Yildirim-Aksoy M., Klesius P.H. (2012). Use of diet crossover to determine the effects of β-glucan supplementation on immunity and growth of Nile Tilapia, Oreochromis niloticus. J. World Aquacult. Soc., 43: 335–348.
- Whittington R., Lim C., Klesius P.H. (2005). Effect of dietary β-glucan levels on the growth response and efficacy of Streptococcus iniae vaccine in Nile tilapia, Oreochromis niloticus. Aquaculture, 248: 217–225.
- Witeska M., Kondera E., Ługowska K., Bojarski B. (2022). Hematological methods in fish – not only for beginners. Aquaculture, 547: 737498.
- Xu C., Suo Y., Wang X., Qin J.G., Chen L. (2020). Recovery from hypersaline-stress-Induced immunity damage and intestinal-microbiota changes through dietary β-glucan supplementation in Nile tilapia (Oreochromis niloticus). Animals, 10: 2243.
- Yamamoto F.Y., Sutili F.J., Hume M., Gatlin III D.M. (2018). The effect of β-1,3-glucan derived from Euglena gracilis (Algamune™) on the innate immunological responses of Nile tilapia (Oreochromis niloticus L.). J. Fish Dis., 41: 1579–1588.
- Yano T. (1992). Assay of hemolytic complement activity. Tech. Fish Immunol., 131–141.
- Zar J. (1984). Biostatstical analysis, 2nd ed Prentice-Hall. Inc., Englewood Cliffs, NJ.