References
- Abd El-Naby F.S., Naiel M.A.E., Al-Sagheer A.A., Negm S.S. (2019). Dietary chitosan nanoparticles enhance the growth, production performance, and immunity in Oreochromis niloticus. Aquaculture, 501: 82–89.
- Abdel-Ghany H.M., Salem M.E. (2020). Effects of dietary chitosan supplementation on farmed fish; a review. Rev Aquac., 12: 438–452.
- Abdel Rahman A.N., Elshopakey G.E., Behairy A., Altohamy D.E., Ahmed A.I., Farroh K.Y., Alkafafy M., Shahin S.A., Ibrahim R.E. (2022). Chitosan-Ocimum basilicum nanocomposite as a dietary additive in Oreochromis niloticus: Effects on immune-antioxidant response, head kidney gene expression, intestinal architecture, and growth. Fish Shellfish Immunol., 128: 425–435.
- Abdel-Tawwab M., Razek N.A., Abdel-Rahman A.M. (2019). Immunostimulatory effect of dietary chitosan nanoparticles on the performance of Nile tilapia, Oreochromis niloticus (L.). Fish Shell-fish Immunol., 88: 254–258.
- Abo Elsoud M.M., El Kady E.M. (2019). Current trends in fungal bio-synthesis of chitin and chitosan. Bulletin of the National Research Centre, 43: 1–12.
- Abu-Elala N.M., Mohamed S.H., Zaki M.M., Eissa A.E. (2015). Assessment of the immune-modulatory and antimicrobial effects of dietary chitosan on Nile tilapia (Oreochromis niloticus) with special emphasis to its bio-remediating impacts. Fish Shellfish Immunol., 46: 678–685.
- Abu-Elala N.M., AbuBakr H.O., Khattab M.S., Mohamed S.H., Elhady M.A., Ghandour R.A., Morsi R.E. (2018). Aquatic environmental risk assessment of chitosan/silver, copper and carbon nanotube nanocomposites as antimicrobial agents. Int. J. Biol. Macromol., 113: 1105–1115.
- Ahmed F., Soliman F.M., Adly M.A., Soliman H.A.M., El-Matbouli M., Saleh M. (2021). Dietary chitosan nanoparticles: potential role in modulation of rainbow trout (Oncorhynchus mykiss) antibacterial defense and intestinal immunity against enteric red-mouth disease. Mar Drugs, 19: 72.
- Aibani N., Rai R., Patel P., Cuddihy G., Wasan E.K. (2021). Chitosan nanoparticles at the biological interface: Implications for drug delivery. Pharmaceutics, 13: 1686.
- Akbary P., Younesi A. (2017). Effect of dietary supplementation of chitosan on growth, hematology and innate immunity of grey mullet (Mugil cephalus). Vet. Res. Biol. Prod., 30: 194–203.
- Ali M.E.A., Aboelfadl M.M.S., Selim A.M., Khalil H.F., Elkady G.M. (2018). Chitosan nanoparticles extracted from shrimp shells, application for removal of Fe(II) and Mn(II) from aqueous phases. Sep. Sci. Technol., 53: 2870–2881.
- Alishahi A., Mirvaghefi A., Tehrani M.R., Farahmand H., Koshio S., Dorkoosh F.A., Elsabee M.Z. (2011). Chitosan nanoparticle to carry vitamin C through the gastrointestinal tract and induce the non-specific immunity system of rainbow trout (Oncorhynchus mykiss). Carbohydr Polym., 86: 142–146.
- Alishahi M., Esmaili Rad A., Zarei M., Ghorbanpour M. (2014). Effect of dietary chitosan on immune response and disease resistance in Cyprinus carpio. Iran J. Vet. Med., 8: 125–133.
- Allan C.R., Hadwiger L.A. (1979). The fungicidal effect of chitosan on fungi of varying cell wall composition. Exp. Mycol., 3: 285–287.
- Almalik A., Donno R., Cadman C.J., Cellesi F., Day P.J., Tirelli N. (2013). Hyaluronic acid-coated chitosan nanoparticles: Molecular weight-dependent effects on morphology and hyaluronic acid presentation. J. Controll. Rel., 172: 1142–1150.
- Amin A., El Asely A., Abd El-Naby A.S., Samir F., El-Ashram A., Sudhakaran R., Dawood M.A.O. (2019). Growth performance, intestinal histomorphology and growth-related gene expression in response to dietary Ziziphus mauritiana in Nile tilapia (Oreochromis niloticus). Aquaculture, 512: 734301.
- Andre G., Deghorain M., Bron P.A., Van Swam I.I., Kleerebezem M., Hols P., Dufrêne Y.F. (2011). Fluorescence and atomic force microscopy imaging of wall teichoic acids in Lactobacillus plantarum. ACS Chem. Biol., 6: 366–376.
- Aranaz I., Alcántara A.R., Civera M.C., Arias C., Elorza B., Heras Caballero A., Acosta N. (2021). Chitosan: an overview of its properties and applications. Polymers (Basel), 13: 3256.
- Bajaj M., Winter J., Gallert C. (2011). Effect of deproteination and deacetylation conditions on viscosity of chitin and chitosan extracted from Crangon crangon shrimp waste. Biochem. Eng. J., 56: 51–62.
- Baldrick P. (2010). The safety of chitosan as a pharmaceutical excipient. Regul. Toxicol. Pharmacol., 56: 290–299.
- Banaee M., Mehrpak M., Hagi B.B.N., Noori A. (2015). Amelioration of cadmium-induced changes in biochemical parameters of the muscle of common carp (Cyprinus carpio) by vitamin C and chitosan. Int. J. Aquat. Biol., 3: 362–371.
- Banerjee T., Mitra S., Kumar Singh A., Kumar Sharma R., Maitra A. (2002). Preparation, characterization and biodistribution of ultra-fine chitosan nanoparticles. Int. J. Pharm., 243: 93–105.
- Bansil R., Turner B.S. (2018). The biology of mucus: Composition, synthesis and organization. Adv. Drug. Deliv. Rev., 124: 3–15.
- Benettayeb A., Morsli A., Elwakeel K.Z., Hamza M.F., Guibal E. (2021). Recovery of heavy metal ions using magnetic glycine-modified chitosan – application to aqueous solutions and tailing leachate. Appl. Sci., 11: 8377.
- Benettayeb A., Ghosh S., Usman M., Seihoub F.Z., Sohoo I., Chia C.H., Sillanpää M. (2022). Some well-known alginate and chitosan modifications used in adsorption: a review. Water (Basel), 14: 1353.
- Benettayeb A., Seihoub F.Z., Pal P., Ghosh S., Usman M., Chia C.H., Usman M., Sillanpää M. (2023). Chitosan nanoparticles as potential nano-sorbent for removal of toxic environmental pollutants. Nanomaterials, 13: 447.
- Benhabiles M.S., Salah R., Lounici H., Drouiche N., Goosen M.F.A., Mameri N. (2012). Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll., 29: 48–56.
- Berth G., Dautzenberg H. (2002). The degree of acetylation of chitosans and its effect on the chain conformation in aqueous solution. Carbohydr. Polym., 47: 39–51.
- Bhattacharyya A., Chattopadhyay R., Mitra S., Crowe S.E. (2014). Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev., 94: 329–354.
- Bondad-Reantaso M.G., Subasinghe R.P., Arthur J.R., Ogawa K., Chinabut S., Adlard R., Tan Z., Shariff M. (2005). Disease and health management in Asian aquaculture. Vet. Parasitol., 132: 249–272.
- Brol J., Müller L., Prates E.C.A., de Farias B.S., Pedrosa V.F., de Almeida Pinto L.A., Sant’anna Cadaval T.R., Tesser M.B., Wasielesky W., Ventura-Lima J. (2021). Dietary chitosan supplementation in Litopenaeus vannamei reared in a biofloc system: Effect on antioxidant status facing saline stress. Aquaculture, 544: 737034.
- Cabillon N., Lazado C. (2019). Mucosal barrier functions of fish under changing environmental conditions. Fishes, 4: 2.
- Cha S.-H., Lee J.-S., Song C.-B., Lee K.-J., Jeon Y.-J. (2008). Effects of chitosan-coated diet on improving water quality and innate immunity in the olive flounder, Paralichthys olivaceus. Aquaculture, 278: 110–118.
- Chandhini S., Trumboo B., Jose S., Varghese T., Rajesh M., Kumar V.J.R. (2021). Insulin-like growth factor signalling and its significance as a biomarker in fish and shellfish research. Fish Physiol. Biochem., 47: 1011–1031.
- Chang S.H., Wu C.H., Tsai G.J. (2018). Effects of chitosan molecular weight on its antioxidant and antimutagenic properties. Carbohydr. Polym., 181: 1026–1032.
- Charoenvuttitham P., Shi J., Mittal G.S. (2006). Chitin extraction from black tiger shrimp (Penaeus monodon) waste using organic acids. Sep. Sci. Technol., 41: 1135–1153.
- Chen J., Chen L. (2019). Effects of chitosan-supplemented diets on the growth performance, nonspecific immunity and health of loach fish (Misgurnus anguillicadatus). Carbohydr. Polym., 225: 115227.
- Chen Y., Zhu X., Yang Y., Han D., Jin J., Xie S. (2014). Effect of dietary chitosan on growth performance, haematology, immune response, intestine morphology, intestine microbiota and disease resistance in gibel carp (Carassius auratus gibelio). Aquac. Nutr., 20: 532–546.
- Clifton L.A., Skoda M.W.A., Le Brun A.P., Ciesielski F., Kuzmenko I., Holt S.A., Lakey J.H. (2015). Effect of divalent cation removal on the structure of gram-negative bacterial outer membrane models. Langmuir, 31: 404–412.
- Collado-González M., Espinosa Y.G., Goycoolea F.M. (2019). Interaction between chitosan and mucin: fundamentals and applications. Biomimetics (Basel), 4.
- Cone R.A. (2009). Barrier properties of mucus. Adv. Drug Deliv. Rev., 61: 75–85.
- Costantini C., Cassatella M.A. (2011). The defensive alliance between neutrophils and NK cells as a novel arm of innate immunity. J. Leukoc. Biol., 89: 221–233.
- Cui H., Kong Y., Zhang H. (2012). Oxidative stress, mitochondrial dysfunction, and aging. J. Signal Transduct., 2012: 1–13. Dawood M.A.O., Koshio S. (2016). Recent advances in the role of probiotics and prebiotics in carp aquaculture: A review. Aquaculture, 454: 243–251.
- Dawood M.A.O., Gewaily M.S., Soliman A.A., Shukry M., Amer A.A., Younis E.M., Abdel-Warith A.W.A., Van Doan H., Saad A.H., Aboubakr M., Abdel-Latif H.M.R., Fadl S.E. (2020). Marine-derived chitosan nanoparticles improved the intestinal histomorphometrical features in association with the health and immune response of grey mullet (Liza ramada). Mar. Drugs, 18.
- Dezfuly Z.T., Alishahi M., Ghorbanpoor M., Tabandeh M.R., Mesbah M. (2020). Immunogenicity and protective efficacy of Yersinia ruckeri lipopolysaccharide (LPS), encapsulated by alginate-chitosan micro/nanoparticles in rainbow trout (Oncorhyncus mykiss). Fish Shellfish Immunol., 104: 25–35.
- Dhillon G.S., Kaur S., Brar S.K., Verma M. (2013). Green synthesis approach: extraction of chitosan from fungus mycelia. Crit. Rev. Biotechnol., 33: 379–403.
- Divya K., Vijayan S., George T.K., Jisha M.S. (2017). Antimicrobial properties of chitosan nanoparticles: Mode of action and factors affecting activity. Fibers Polymers, 18: 221–230.
- Doan C.T., Tran T.N., Nguyen V.B., Vo T.P.K., Nguyen A.D., Wang S.- L. (2019). Chitin extraction from shrimp waste by liquid fermentation using an alkaline protease-producing strain, Brevibacillus parabrevis. Int. J. Biol. Macromol., 131: 706–715.
- Dunkelberger J.R., Song W.C. (2010). Complement and its role in innate and adaptive immune responses. Cell Res., 20: 34–50.
- Elabd H., Mahboub H., Salem S., Abdelwahab A., Alwutayd K., Shaalan M., Ismail S., Abdelfattah A., Khalid A., Mansour A., Hamed H., Youssuf H. (2023). Nano-curcumin/chitosan modulates growth, biochemical, immune, and antioxidative profiles, and the expression of related genes in Nile tilapia, Oreochromis niloticus. Fishes, 8: 333.
- El Basuini M.F., Teiba I.I., Zaki M.A.A., Alabssawy A.N., El-Hais A.M., Gabr A.A., Dawood M.A.O., Zaineldin A.I., Mzengereza K., Shadrack R.S., Dossou S. (2020). Assessing the effectiveness of CoQ10 dietary supplementation on growth performance, digestive enzymes, blood health, immune response, and oxidative-related genes expression of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol., 98: 420–428.
- El Basuini M.F., Shahin S.A., Teiba I.I., Zaki M.A.A., El-Hais A.M., Sewilam H., Almeer R., Abdelkhalek N., Dawood M.A.O. (2021). The influence of dietary coenzyme Q10 and vitamin C on the growth rate, immunity, oxidative-related genes, and the resistance against Streptococcus agalactiae of Nile tilapia (Oreochromis niloticus). Aquaculture, 531: 735862.
- Elieh-Ali-Komi D., Hamblin M.R., Daniel E.-A.-K. (2016). Chitin and chitosan: Production and application of versatile biomedical nano-materials. Int. J. Adv. Res. (Indore), 4: 411.
- El Knidri H., Belaabed R., Addaou A., Laajeb A., Lahsini A. (2018). Extraction, chemical modification and characterization of chitin and chitosan. Int. J. Biol. Macromol., 120: 1181–1189.
- El-Naggar M., Salaah S., El-Shabaka H., El-Rahman F.A., Khalil M., Suloma A. (2021). Efficacy of dietary chitosan and chitosan nanoparticles supplementation on health status of Nile tilapia, Oreochromis niloticus (L.). Aquac. Rep., 19: 100628.
- El-Sayed H.S., Barakat K.M. (2016). Effect of dietary chitosan on challenged Dicentrarchus labrax post larvae with Aeromonas hydrophila. Russ. J. Mar. Biol., 42: 501–508.
- Elvy J.E., Symonds J.E., Hilton Z., Walker S.P., Tremblay L.A., Casanovas P., Herbert N.A. (2022). The relationship of feed intake, growth, nutrient retention, and oxygen consumption to feed conversion ratio of farmed saltwater chinook salmon (Oncorhynchus tshawytscha). Aquaculture, 554: 738184.
- Ernsting M.J., Murakami M., Roy A., Li S.D. (2013). Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J. Control Rel., 172: 782–794.
- Fadl S.E., El-Gammal G.A., Abdo W.S., Barakat M., Sakr O.A., Nassef E., Gad D.M., El-Sheshtawy H.S. (2020). Evaluation of dietary chitosan effects on growth performance, immunity, body composition and histopathology of Nile tilapia (Oreochromis niloticus) as well as the resistance to Streptococcus agalactiae infection. Aquac. Res., 51: 1120–1132.
- Fan L., Zhang Y., Luo C., Lu F., Qiu H., Sun M. (2012). Synthesis and characterization of magnetic β-cyclodextrin–chitosan nanoparticles as nano-adsorbents for removal of methyl blue. Int. J. Biol. Macromol., 50: 444–450.
- FAO (2022). The State of World Fisheries and Aquaculture (SOFIA), FAO: Rome, 2022. FAO, Rome, Italy.
- Feng P., Luo Y., Ke C., Qiu H., Wang W., Zhu Y., Hou R., Xu L., Wu S. (2021). Chitosan-based functional materials for skin wound repair: mechanisms and applications. Front. Bioeng. Biotechnol., 9: 650598.
- Filipe V., Hawe A., Jiskoot W. (2010). Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm. Res., 27: 796–810.
- Filippin L.I., Vercelino R., Marroni N.P., Xavier R.M. (2008). Redox signalling and the inflammatory response in rheumatoid arthritis. Clin. Exp. Immunol., 152: 415–422.
- Fröhlich E. (2012). The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomedicine, 7: 5577–5591.
- Galván Márquez I., Akuaku J., Cruz I., Cheetham J., Golshani A., Smith M.L. (2013). Disruption of protein synthesis as antifungal mode of action by chitosan. Int. J. Food Microbiol., 164: 108–112.
- Geng X., Dong X.-H., Tan B.-P., Yang Q.-H., Chi S.-Y., Liu H.-Y., Liu X.-Q. (2011). Effects of dietary chitosan and Bacillus subtilis on the growth performance, non-specific immunity and disease resistance of cobia, Rachycentron canadum. Fish Shellfish Immunol., 31: 400–406.
- Gosteli-Peter M.A., Winterhalter K.H., Schmid C., Froesch E.R., Zapf J. (1994). Expression and regulation of insulin-like growth factor-I (IGF-I) and IGF-binding protein messenger ribonucleic acid levels in tissues of hypophysectomized rats infused with IGF-I and growth hormone. Endocrinology, 135: 2558–2567.
- Gregorio-Jauregui K.M., Pineda Ma.G., Rivera-Salinas J.E., Hurtado G., Saade H., Martinez J.L., Ilyina A., López R.G. (2012). One-step method for preparation of magnetic nanoparticles coated with chitosan. J. Nanomater., 2012: 1–8.
- Gugliotta L.M., Vega J.R., Meira G.R. (2000). Latex particle size distribution by dynamic light scattering: computer evaluation of two alternative calculation paths. J. Colloid. Interface Sci., 228: 14–17.
- Guibal E. (2004). Interactions of metal ions with chitosan-based sorbents: a review. Sep. Purif. Technol., 38: 43–74.
- Hahn T., Tafi E., Paul A., Salvia R., Falabella P., Zibek S. (2020). Current state of chitin purification and chitosan production from insects. J. Chem. Technol. Biotechnol., 95: 2775–2795.
- Hajji S., Younes I., Rinaudo M., Jellouli K., Nasri M. (2015). Characterization and in vitro evaluation of cytotoxicity, antimicrobial and antioxidant activities of chitosans extracted from three different marine sources. Appl. Biochem. Biotechnol., 177: 18–35.
- Hamed H.S., Ali R.M., Shaheen A.A., Hussein N.M. (2021 a). Chitosan nanoparticles alleviated endocrine disruption, oxidative damage, and genotoxicity of bisphenol-A-intoxicated female African catfish. Comp. Biochem. Physiol. C: Toxicol. Pharmacol., 248: 109104.
- Hamed S.B., Tapia-Paniagua S.T., Moriñigo M.Á., Ranzani-Paiva M.J.T. (2021 b). Advances in vaccines developed for bacterial fish diseases, performance and limits. Aquac. Res., 52: 2377–2390.
- Hamed I., Özogul F., Regenstein J.M. (2016). Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccha-rides): A review. Trends Food Sci. Technol., 48: 40–50.
- Hamuro K., Suetake H., Saha N.R., Kikuchi K., Suzuki Y. (2007). A teleost polymeric Ig receptor exhibiting two Ig-like domains transports tetrameric IgM into the skin. J. Immunol., 178: 5682–5689.
- Hamza M.F., Wei Y., Benettayeb A., Wang X., Guibal E. (2020). Efficient removal of uranium, cadmium and mercury from aqueous solutions using grafted hydrazide-micro-magnetite chitosan derivative. J. Mater Sci., 55: 4193–4212.
- Harikrishnan R., Kim J.-S., Kim M.-C., Balasundaram C., Heo M.-S. (2011). Hericium erinaceum enriched diets enhance the immune response in Paralichthys olivaceus and protect from Philasterides dicentrarchi infection. Aquaculture, 318: 48–53.
- Harikrishnan R., Kim J.S., Balasundaram C., Heo M.S. (2012). Immunomodulatory effects of chitin and chitosan enriched diets in Epinephelus bruneus against Vibrio alginolyticus infection. Aqua-culture, 326–329: 46–52.
- Hasan M.T., Jang W.J., Lee S., Kim K.W., Lee B.-J., Han H.-S., Bai S.C., Kong I.-S. (2018). Effect of β-glucooligosaccharides as a new prebiotic for dietary supplementation in olive flounder (Paralichthys olivaceus) aquaculture. Aquac. Res., 49: 1310–1319.
- Helander I.M., Von Wright A., Mattila-Sandholm T.M. (1997). Potential of lactic acid bacteria and novel antimicrobials against Gram-negative bacteria. Trends Food Sci. Technol., 8: 146–150.
- Helander I.M., Nurmiaho-Lassila E.L., Ahvenainen R., Rhoades J., Roller S. (2001). Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int. J. Food Micro-biol., 71: 235–244.
- Hembram K.C., Prabha S., Chandra R., Ahmed B., Nimesh S. (2016). Advances in preparation and characterization of chitosan nanoparticles for therapeutics. Artif. Cells Nanomed. Biotechnol., 44: 305–314.
- Heppell J., Davis H.L. (2000). Application of DNA vaccine technology to aquaculture. Adv. Drug Deliv. Rev., 43: 29–43.
- Hill A.J., Teraoka H., Heideman W., Peterson R.E. (2005). Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol. Sci., 86: 6–19.
- Hirano S. (1996). Chitin biotechnology applications. Biotechnol. Annu. Rev., 2: 237–258.
- Hossam-Elden N., Abu-Elala N., Ali S.E., Khattab M.S., Marzouk M.S. (2024). Dietary immune nutritive effect of chitosan/chitosan nanoparticles on the Nile tilapia: short-term exposure. Egypt J. Aquat. Biol. Fish., 28: 157–183.
- Hosseinnejad M., Jafari S.M. (2016). Evaluation of different factors affecting antimicrobial properties of chitosan. Int. J. Biol. Macro-mol., 85: 467–475.
- Hu Y., Du Y., Yang J., Tang Y., Li J., Wang X. (2007). Self-aggregation and antibacterial activity of N-acylated chitosan. Polymer (Guildf), 48: 3098–3106.
- Hu Y.-L., Qi W., Han F., Shao J.-Z., Gao J.-Q. (2011). Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model. Int. J. Nanomed., 6: 3351–3359.
- Huang M., Khor E., Lim L.Y. (2004). Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm. Res., 21: 344–353.
- Ilyina A.V., Tikhonov V.E., Albulov A.I., Varlamov V.P. (2000). Enzymic preparation of acid-free-water-soluble chitosan. Process Biochem., 35: 563–568.
- Ivanova D.G., Yaneva Z.L. (2020). Antioxidant properties and redox-modulating activity of chitosan and its derivatives: biomaterials with application in cancer therapy. Biores Open Access, 9: 64.
- Iwasaki A. (2007). Mucosal dendritic cells. Annu. Rev. Immunol., 25: 381–418.
- Je H.J., Kim E.S., Lee J.S., Lee H.G. (2017). Release properties and cellular uptake in Caco-2 cells of size-controlled chitosan nanoparticles. J. Agric. Food Chem., 65: 10899–10906.
- Jha R., Mayanovic R.A. (2023). A review of the preparation, characterization, and applications of chitosan nanoparticles in nano-medicine. Nanomaterials, 13: 1302.
- Jo G.-H., Park R.-D., Jung W.-J. (2010). Enzymatic production of chitin from crustacean shell waste. In: Chitin, Chitosan, Oligosaccharides and their Derivatives, Kim S.-K. (ed.). CRC Press, pp. 37–45.
- Jørgensen J.O.L., Jessen N., Pedersen S.B., Vestergaard E., Gormsen L., Lund S.A., Billestrup N. (2006). GH receptor signaling in skeletal muscle and adipose tissue in human subjects following exposure to an intravenous GH bolus. Am. J. Physiol. Endocrinol. Metab., 291: E899–E905.
- Joseph S.M., Krishnamoorthy S., Paranthaman R., Moses J.A., Anandharamakrishnan C. (2021). A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydr. Polym. Technol. Appl., 2: 100036.
- Kaczmarek M.B., Struszczyk-Swita K., Li X., Szczęsna-Antczak M., Daroch M. (2019). Enzymatic modifications of chitin, chitosan, and chitooligosaccharides. Front. Bioeng. Biotechnol., 7: 481174.
- Kaleem O., Bio Singou Sabi A.-F. (2021). Overview of aquaculture systems in Egypt and Nigeria, prospects, potentials, and constraints. Aquac. Fish., 6: 535–547.
- Kamali Najafabad M., Imanpoor M.R., Taghizadeh V., Alishahi A. (2016). Effect of dietary chitosan on growth performance, hematological parameters, intestinal histology and stress resistance of Caspian kutum (Rutilus frisii kutum Kamenskii, 1901) fingerlings. Fish Physiol. Biochem., 42: 1063–1071.
- Kamilya D., Khan M.I.R. (2020). Chitin and chitosan as promising immunostimulant for aquaculture. In: Handbook of Chitin and Chitosan: Volume 3: Chitin- and Chitosan-based Polymer Materials for Various Applications, Gopi S., Thomas S., Pius A. (eds). Elsevier, pp. 761–771.
- Kaur S., Dhillon G.S. (2014). The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. Crit. Rev. Microbiol., 40: 155–175.
- Kaur S., Dhillon G.S. (2015). Recent trends in biological extraction of chitin from marine shell wastes: a review. Crit. Rev. Biotechnol., 35: 44–61.
- Kaya M., Baran T., Mentes A., Asaroglu M., Sezen G., Tozak K.O. (2014). Extraction and characterization of α-chitin and chitosan from six different aquatic invertebrates. Food Biophys., 9: 145–157.
- Kern T., Giffard M., Hediger S., Amoroso A., Giustini C., Bui N.K., Joris B., Bougault C., Vollmer W., Simorre J.P. (2010). Dynamics characterization of fully hydrated bacterial cell walls by solid-state NMR: evidence for cooperative binding of metal ions. J. Am. Chem. Soc., 132: 10911–10919.
- Kim J., Khan W. (2013). Goblet cells and mucins: role in innate defense in enteric infections. Pathogens, 2: 55–70.
- Kim Y.K., Shin J.S., Nahm M.H. (2016). NOD-like receptors in infection, immunity, and diseases. Yonsei Med. J., 57: 5–14. Kołodyńska D. (2012). Adsorption characteristics of chitosan modified by chelating agents of a new generation. Chem. Eng. J., 179: 33–43.
- Kong M., Chen X.G., Xing K., Park H.J. (2010). Antimicrobial properties of chitosan and mode of action: a state of the art review. Int. J. Food Microbiol., 144: 51–63.
- Kou S. (G.), Peters L.M., Mucalo M.R. (2021). Chitosan: A review of sources and preparation methods. Int. J. Biol. Macromol., 169: 85–94.
- Kumar M.N.V.R., Muzzarelli R.A.A., Muzzarelli C., Sashiwa H., Domb A.J. (2004). Chitosan chemistry and pharmaceutical perspectives. Chem. Rev., 104: 6017–6084.
- Kurita K. (2006). Chitin and chitosan: functional biopolymers from marine crustaceans. Mar. Biotechnol. (NY), 8: 203–226.
- Landes D.R., Bough W.A. (1976). Effects of chitosan – a coagulating agent for food processing wastes – in the diets of rats on growth and liver and blood composition. Bull. Environ. Contam. Toxicol., 15: 555–563.
- Lang C., Mission E.G., Ahmad Fuaad A.A.-H., Shaalan M. (2021). Nanoparticle tools to improve and advance precision practices in the agrifoods sector towards sustainability – a review. J. Clean. Prod., 293: 126063.
- Lankalapalli S., Kolapalli V.R.M. (2009). Polyelectrolyte complexes: A review of their applicability in drug delivery technology. Indian J. Pharm. Sci., 71: 481.
- Li B., Zhang J., Dai F., Xia W. (2012). Purification of chitosan by using sol–gel immobilized pepsin deproteinization. Carbohydr. Polym., 88: 206–212.
- Lin S., Mao S., Guan Y., Luo L., Luo L., Pan Y. (2012). Effects of dietary chitosan oligosaccharides and Bacillus coagulans on the growth, innate immunity and resistance of koi (Cyprinus carpio koi). Aquaculture, 342–343: 36–41.
- Liu D., Li Z., Zhu Y., Li Z., Kumar R. (2014). Recycled chitosan nanofibril as an effective Cu(II), Pb(II) and Cd(II) ionic chelating agent: adsorption and desorption performance. Carbohydr. Polym., 111: 469–476.
- Lushchak V.I. (2014). Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact., 224: 164–175.
- Madni A., Kousar R., Naeem N., Wahid F. (2021). Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. J. Biores. Bioprod., 6: 11–25.
- Magnadóttir B. (2006). Innate immunity of fish (overview). Fish Shell-fish Immunol., 20: 137–151.
- Mahdy Samar M., El-Kalyoubi M.H., Khalaf M.M., Abd El-Razik M.M. (2013). Physicochemical, functional, antioxidant and antibacterial properties of chitosan extracted from shrimp wastes by microwave technique. Ann. Agricult. Sci., 58: 33–41.
- Mair G.C., Halwart M., Derun Y., Costa-Pierce B.A. (2023). A decadal outlook for global aquaculture. J. World Aquac. Soc., 54: 196–205.
- Majer O., Liu B., Barton G.M. (2017). Nucleic acid-sensing TLRs: trafficking and regulation. Curr. Opin. Immunol., 44: 26–33.
- Malik M.A., Wani M.Y., Hashim M.A. (2012). Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update. Arabian J. Chem., 5: 397–417.
- Másson M., Holappa J., Hjálmarsdóttir M., Rúnarsson Ö.V., Neva-lainen T., Järvinen T. (2008). Antimicrobial activity of piperazine derivatives of chitosan. Carbohydr. Polym., 74: 566–571.
- Matica M.A., Aachmann F.L., Tøndervik A., Sletta H., Ostafe V. (2019). Chitosan as a wound dressing starting material: antimicrobial properties and mode of action. Int. J. Mol. Sci., 20.
- McGrath P., Li C.Q. (2008). Zebrafish: a predictive model for assessing drug-induced toxicity. Drug Discov. Today, 13: 394–401.
- McGuckin M.A., Lindén S.K., Sutton P., Florin T.H. (2011). Mucin dynamics and enteric pathogens. Nat. Rev. Microbiol., 9: 265–278.
- Mohammed M., Syeda J., Wasan K., Wasan E. (2017). An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics, 9: 53.
- Mohan K., Ganesan A.R., Muralisankar T., Jayakumar R., Sathishkumar P., Uthayakumar V., Chandirasekar R., Revathi N. (2020). Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends Food Sci. Technol., 105: 17–42.
- Mohan K., Muralisankar T., Jayakumar R., Rajeevgandhi C. (2021). A study on structural comparisons of α-chitin extracted from marine crustacean shell waste. Carbohydr. Polym. Technol. Appl., 2: 100037.
- Mokhtar D., Zaccone G., Alesci A., Kuciel M., Hussein M., Sayed R. (2023). Main components of fish immunity: an overview of the fish immune system. Fishes, 8: 93.
- Morgan K., Conway C., Faherty S., Quigley C. (2021). A comparative analysis of conventional and deep eutectic solvent (DES)-mediated strategies for the extraction of chitin from marine crustacean shells. Molecules, 26: 7603.
- Morin-Crini N., Lichtfouse E., Torri G., Crini G. (2019). Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ. Chem. Lett., 17: 1667–1692.
- Muthu M., Gopal J., Chun S., Devadoss A.J.P., Hasan N., Sivanesan I. (2021). Crustacean waste-derived chitosan: antioxidant properties and future perspective. Antioxidants, 10: 228.
- Nagpal K., Singh S.K., Mishra D.N. (2010). Chitosan nanoparticles: a promising system in novel drug delivery. Chem. Pharm. Bull. (Tokyo), 58: 1423–1430.
- Nel A., Xia T., Mädler L., Li N. (2006). Toxic potential of materials at the nanolevel. Science, 311: 622–627.
- Ngah W.S.W., Fatinathan S. (2010). Pb(II) biosorption using chitosan and chitosan derivatives beads: Equilibrium, ion exchange and mechanism studies. J. Environ. Sci., 22: 338–346.
- Nguyen T.T., Barber A.R., Smith P., Luo X., Zhang W. (2017). Application and optimization of the highly efficient and environmentally-friendly microwave-intensified lactic acid demineralization of deproteinized rock lobster shells (Jasus edwardsii) for chitin production. Food Bioprod. Proces., 102: 367–374.
- Nikapitiya C., Dananjaya S.H.S., De Silva B.C.J., Heo G.J., Oh C., De Zoysa M., Lee J. (2018). Chitosan nanoparticles: A positive immune response modulator as display in zebrafish larvae against Aeromonas hydrophila infection. Fish Shellfish Immunol., 76: 240–246.
- Nilsen-Nygaard J., Strand S.P., Vårum K.M., Draget K.I., Nordgård C.T. (2015). Chitosan: gels and interfacial properties. Polymers, 7: 552–579.
- Niu J., Liu Y.J., Lin H.Z., Mai K.S., Yang H.J., Liang G.Y., Tian L.X. (2011). Effects of dietary chitosan on growth, survival and stress tolerance of postlarval shrimp, Litopenaeus vannamei. Aquac. Nutr., 17.
- No H. (2002). Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol., 74: 65–72.
- Oberdörster G., Maynard A., Donaldson K., Castranova V., Fitzpatrick J., Ausman K., Carter J., Karn B., Kreyling W., Lai D., Olin S., Monteiro-Riviere N., Warheit D., Yang H. (2005). Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol., 2.
- Ospina Álvarez S.P., Ramírez Cadavid D.A., Escobar Sierra D.M., Ossa Orozco C.P., Rojas Vahos D.F., Zapata Ocampo P., Atehortúa L. (2014). Comparison of extraction methods of chitin from Ganoderma lucidum mushroom obtained in submerged culture. Biomed. Res. Int., 2014: 1–7.
- Palanisamy S., Vinosha M., Rajasekar P., Anjali R., Sathiyaraj G., Marudhupandi T., Selvam S., Prabhu N.M., You S. (2019). Antibacterial efficacy of a fucoidan fraction (Fu-F2) extracted from Sargassum polycystum. Int. J. Biol. Macromol., 125: 485–495.
- Paray B.A., El-Basuini M.F., Alagawany M., Albeshr M.F., Farah M.A., Dawood M.A.O. (2021). Yucca schidigera usage for healthy aquatic animals: Potential roles for sustainability. Animals, 11: 93.
- Parihar A., Eubank T.D., Doseff A.I. (2010). Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J. Innate Immun., 2: 204–215.
- Park B.K., Kim M.M. (2010). Applications of chitin and its derivatives in biological medicine. Int. J. Mol. Sci., 11: 5152–5164.
- Park P.J., Je J.Y., Kim S.K. (2004). Free radical scavenging activities of differently deacetylated chitosans using an ESR spectrometer. Carbohydr. Polym., 55: 17–22.
- Pellis A., Guebitz G.M., Nyanhongo G.S. (2022). Chitosan: Sources, processing and modification techniques. Gels, 8: 393.
- Philibert T., Lee B.H., Fabien N. (2017). Current status and new perspectives on chitin and chitosan as functional biopolymers. Appl. Biochem. Biotechnol., 181: 1314–1337.
- Pillai C.K.S., Paul W., Sharma C.P. (2009). Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci., 34: 641–678.
- Preuss H., Kaats G. (2006). Chitosan as a dietary supplement for weight loss: A review. Curr. Nutr. Food Sci., 2: 297–311.
- Qin C., Gao J., Wang L., Zeng L., Liu Y. (2006). Safety evaluation of short-term exposure to chitooligomers from enzymic preparation. Food Chem. Toxicol., 44: 855–861.
- Ramasamy P., Subhapradha N., Thinesh T., Selvin J., Selvan K.M., Shanmugam V., Shanmugam A. (2017). Characterization of bio-active chitosan and sulfated chitosan from Doryteuthis singhalensis (Ortmann, 1891). Int. J. Biol. Macromol., 99: 682–691.
- Ranjan R., Prasad K.P., Vani T., Kumar R. (2014). Effect of dietary chitosan on haematology, innate immunity and disease resistance of Asian seabass Lates calcarifer (Bloch). Aquac. Res., 45: 983–993. Riera Romo M., Pérez-Martínez D., Castillo Ferrer C. (2016). Innate immunity in vertebrates: an overview. Immunology, 148: 125–139.
- Rødde R.H., Einbu A., Vårum K.M. (2008). A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohydr. Polym., 71: 388–393.
- Roller S., Covill N. (1999). The antifungal properties of chitosan in laboratory media and apple juice. Int. J. Food Microbiol., 47: 67–77.
- Rosyada A., Sunarharum W.B., Waziiroh E. (2019). Characterization of chitosan nanoparticles as an edible coating material. IOP Conf. Series Earth Environ. Sci., 230: 012043.
- Sahariah P., Másson M. (2017). Antimicrobial chitosan and chitosan derivatives: A review of the structure-activity relationship. Bio-macromolecules, 18: 3846–3868.
- Sahoo B.R. (2020). Structure of fish toll-like receptors (TLR) and NOD-like receptors (NLR). Int. J. Biol. Macromol., 161: 1602.
- Sakai M. (1999). Current research status of fish immunostimulants. Aquaculture. 172: 63–92.
- Salinas I. (2015). The mucosal immune system of teleost fish. Biology (Basel), 4: 525–539.
- Salnikov V., Lukyánenko Y.O., Frederick C.A., Lederer W.J., Lukyánenko V. (2007). Probing the outer mitochondrial membrane in cardiac mitochondria with nanoparticles. Biophys. J., 92: 1058–1071.
- Saxena R., Saxena M., Lochab A. (2020). Recent progress in nano-materials for adsorptive removal of organic contaminants from wastewater. Chem. Select, 5: 335–353.
- Sebti I., Martial-Gros A., Carnet-Pantiez A., Grelier S., Coma V. (2005). Chitosan polymer as bioactive coating and film against Aspergillus niger contamination. J. Food Sci., 70.
- Secombes C.J., Fletcher T.C. (1992). The role of phagocytes in the protective mechanisms of fish. Annu. Rev. Fish Dis., 2: 53–71.
- Shaalan M., Sellyei B., El-Matbouli M., Székely C. (2020). Efficacy of silver nanoparticles to control flavobacteriosis caused by Flavobacterium johnsoniae in common carp Cyprinus carpio. Dis. Aquat. Organ., 137: 175–183.
- Shahidi F., Arachchi J.K.V., Jeon Y.J. (1999). Food applications of chitin and chitosans. Trends Food Sci. Technol., 10: 37–51.
- Shanmugam A., Kathiresan K., Nayak L. (2016). Preparation, characterization and antibacterial activity of chitosan and phosphorylated chitosan from cuttlebone of Sepia kobiensis (Hoyle, 1885). Biotechnol. Rep., 9: 25–30.
- Shin S., Song I., Um S. (2015). Role of physicochemical properties in nanoparticle toxicity. Nanomaterials, 5: 1351–1365.
- Silva M.T. (2010). When two is better than one: macrophages and neutrophils work in concert in innate immunity as complementary and cooperative partners of a myeloid phagocyte system. J. Leukoc. Biol., 87: 93–106.
- Šimůnek J., Tishchenko G., Hodrová B., Bartoňová H. (2006). Effect of chitosan on the growth of human colonic bacteria. Folia Microbiol. (Praha), 51: 306–308.
- Singh A.K. (2015). Engineered nanoparticles: Structure, properties and mechanisms of toxicity. Academic Press, 545 pp.
- Smith N.C., Rise M.L., Christian S.L. (2019). A comparison of the innate and adaptive immune systems in cartilaginous fish, rayfinned fish, and lobe-finned fish. Front. Immunol., 10.
- Spranghers T., Ottoboni M., Klootwijk C., Ovyn A., Deboosere S., De Meulenaer B., Michiels J., Eeckhout M., De Clercq P., De Smet S. (2017). Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric., 97: 2594–2600.
- Srinivasan H., Kanayairam V., Ravichandran R. (2018). Chitin and chitosan preparation from shrimp shells Penaeus monodon and its human ovarian cancer cell line, PA-1. Int. J. Biol. Macromol., 107: 662–667.
- Stine J.S., Harper B.J., Conner C.G., Velev O.D., Harper S.L. (2021). In vivo toxicity assessment of chitosan-coated lignin nanoparticles in embryonic zebrafish (Danio rerio). Nanomaterials, 11: 111.
- Subhapradha N., Ramasamy P., Sudharsan S., Seedevi P., Moovendhan M., Srinivasan A., Shanmugam V., Shanmugam A. (2013). Preparation of phosphorylated chitosan from gladius of the squid Sepioteuthis lessoniana (Lesson, 1830) and its in vitro antioxidant activity. Bioactive Carbohydr. Diet. Fibre, 1: 148–155.
- Sudarshan N.R., Hoover D.G., Knorr D. (1992). Antibacterial action of chitosan. Food Biotechnol., 6: 257–272.
- Swoboda J.G., Campbell J., Meredith T.C., Walker S. (2010). Wall teichoic acid function, biosynthesis, and inhibition. Chembiochem, 11: 35.
- Taghavi M., Khosravi A., Mortaz E., Nikaein D., Athari S.S. (2017). Role of pathogen-associated molecular patterns (PAMPS) in immune responses to fungal infections. Eur. J. Pharmacol., 808: 8–13.
- Tallant T., Deb A., Kar N., Lupica J., De Veer M.J., DiDonato J.A. (2004). Flagellin acting via TLR5 is the major activator of key signaling pathways leading to NF-kappa B and proinflammatory gene program activation in intestinal epithelial cells. BMC Microbiol., 4.
- Tan Y.N., Lee P.P., Chen W.N. (2020). Dual extraction of crustacean and fungal chitosan from a single Mucor circinelloides fermentation. Fermentation, 6: 40.
- Tanaka Y., Tanioka S.I., Tanaka M., Tanigawa T., Kitamura Y., Minami S., Okamoto Y., Miyashita M., Nanno M. (1997). Effects of chitin and chitosan particles on BALB/c mice by oral and parenteral administration. Biomaterials, 18: 591–595.
- Tang Z.-R., Yin Y.-L., Nyachoti C.M., Huang R.-L., Li T.-J., Yang C., Yang X., Gong J., Peng J., Qi D.-S., Xing J.-J., Sun Z.-H., Fan M.Z. (2005). Effect of dietary supplementation of chitosan and galacto-mannan-oligosaccharide on serum parameters and the insulin-like growth factor-I mRNA expression in early-weaned piglets. Domest. Anim. Endocrinol., 28: 430–441.
- Thirunavukkarasu A., Nithya R., Sivashankar R. (2020). A review on the role of nanomaterials in the removal of organic pollutants from wastewater. Rev. Environ. Sci. Biotechnol., 19: 751–778.
- Triantaphyllopoulos K.A., Cartas D., Miliou H. (2020). Factors influencing GH and IGF-I gene expression on growth in teleost fish: how can aquaculture industry benefit? Rev. Aquac., 12: 1637–1662.
- Triunfo M., Tafi E., Guarnieri A., Salvia R., Scieuzo C., Hahn T., Zibek S., Gagliardini A., Panariello L., Coltelli M.B., De Bonis A., Falabella P. (2022). Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Sci. Rep., 12: 6613.
- Tsai G.J., Su W.H. (1999). Antibacterial activity of shrimp chitosan against Escherichia coli. J Food Prot., 62: 239–243.
- Usman M., Katsoyiannis I., Mitrakas M., Zouboulis A., Ernst M. (2018). Performance evaluation of small sized powdered ferric hydroxide as arsenic adsorbent. Water (Basel), 10: 957.
- Usman M., Belkasmi A.I., Kastoyiannis I.A., Ernst M. (2021). Pre-deposited dynamic membrane adsorber formed of microscale conventional iron oxide-based adsorbents to remove arsenic from water: application study and mathematical modeling. J. Chem. Technol. Biotechnol., 96: 1504–1514.
- Vakili M., Rafatullah M., Salamatinia B., Abdullah A.Z., Ibrahim M.H., Tan K.B., Gholami Z., Amouzgar P. (2014). Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydr. Polym., 113: 115–130.
- Vallejos-Vidal E., Reyes-López F., Teles M., MacKenzie S. (2016). The response of fish to immunostimulant diets. Fish Shellfish Immunol., 56: 34–69.
- Van Bavel N., Issler T., Pang L., Anikovskiy M., Prenner E.J. (2023). A simple method for synthesis of chitosan nanoparticles with ionic gelation and homogenization. Molecules, 28.
- Victor H., Zhao B., Mu Y., Dai X., Wen Z., Gao Y., Chu Z. (2019). Effects of Se-chitosan on the growth performance and intestinal health of the loach Paramisgurnus dabryanus (Sauvage). Aqua-culture, 498: 263–270.
- Vijay K. (2018). Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int. Immunopharmacol., 59: 391–412.
- Vijayaram S., Ringø E., Zuorro A., van Doan H., Sun Y. (2023). Beneficial roles of nutrients as immunostimulants in aquaculture: A review. Aquac Fish., 9: 707–720.
- Wang Y., Li J. (2011). Effects of chitosan nanoparticles on survival, growth and meat quality of tilapia, Oreochromis nilotica. Nanotoxicology, 5: 425–431.
- Wang J., Wu C.-S., Hu Y.-Z., Yang L., Zhang X.-J., Zhang Y.-A. (2022). Plasmablasts induced by chitosan oligosaccharide secrete natural IgM to enhance the humoral immunity in grass carp. Carbohydr. Polym., 281: 119073.
- Wang M., Liu G., Lu M., Ke X., Liu Z., Gao F., Cao J., Zhu H., Yi M., Yu D. (2017). Effect of Bacillus cereus as a water or feed additive on the gut microbiota and immunological parameters of Nile tilapia. Aquac. Res., 48: 3163–3173.
- Wickham J.R., Halye J.L., Kashtanov S., Khandogin J., Rice C.V. (2009). Revisiting magnesium chelation by teichoic acid with phosphorus solid-state NMR and theoretical calculations. J Phys. Chem. B, 113: 2177–2183.
- Wilson R.F. (2006). Nanotechnology: the challenge of regulating known unknowns. J. Law Med. Ethics, 34: 704–713.
- Wilson J.M., Laurent P. (2002). Fish gill morphology: inside out. J. Exp. Zool., 293: 192–213.
- Wu S. (2020). The growth performance, body composition and non-specific immunity of tilapia (Oreochromis niloticus) affected by chitosan. Int. J. Biol. Macromol., 145: 682–685.
- Xie Y., Liu X., Chen Q. (2007). Synthesis and characterization of water-soluble chitosan derivate and its antibacterial activity. Carbohydr. Polym., 69: 142–147.
- Xing K., Chen X.G., Liu C.S., Cha D.S., Park H.J. (2009). Oleoyl-chitosan nanoparticles inhibits Escherichia coli and Staphylococcus aureus by damaging the cell membrane and putative binding to extracellular or intracellular targets. Int. J. Food Microbiol., 132: 127–133.
- Yan J., Guo C., Dawood M.A.O., Gao J. (2017). Effects of dietary chitosan on growth, lipid metabolism, immune response and antioxidant-related gene expression in Misgurnus anguillicaudatus. Benef. Microbes., 8: 439–450.
- Yanat M., Schroën K. (2021). Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. React. Funct. Polym., 161: 104849.
- Yang L., Ho N.Y., Alshut R., Legradi J., Weiss C., Reischl M., Mikut R., Liebel U., Müller F., Strähle U. (2009). Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reprod. Toxicol., 28: 245–253.
- Yilmaz Atay H. (2020). Antibacterial activity of chitosan-based systems. Funct. Chitosan, 457.
- Younes I., Rinaudo M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs, 13: 1133–1174.
- Yu S., Pang H., Huang S., Tang H., Wang S., Qiu M., Chen Z., Yang H., Song G., Fu D., Hu B., Wang X. (2021). Recent advances in metal-organic framework membranes for water treatment: A review. Sci. Total Environ., 800: 149662.
- Zaki M.A., Salem M.E.-S., Gaber M.M., Nour A.M., Zaki M.A., Salem M.E.-S., Gaber M.M., Nour A.M. (2015). Effect of chitosan supplemented diet on survival, growth, feed utilization, body composition and histology of sea bass (Dicentrarchus labrax). World J. Eng. Technol., 3: 38–47.
- Zhang J., Kong X., Zhou C., Li L., Nie G., Li X. (2014). Toll-like receptor recognition of bacteria in fish: ligand specificity and signal pathways. Fish Shellfish Immunol., 41: 380–388.
- Zhang N., Andresen B.T., Zhang C. (2010 a). Inflammation and reactive oxygen species in cardiovascular disease. World J. Cardiol., 2: 408–10.
- Zhang Y.A., Salinas I., Li J., Parra D., Bjork S., Xu Z., Lapatra S.E., Bartholomew J., Sunyer J.O. (2010 b). IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nat. Immunol., 11: 827–835.
- Zhou J., Feng M., Zhang W., Kuang R., Zou Q., Su J., Yuan G. (2022). Oral administration of hepcidin and chitosan benefits growth, immunity, and gut microbiota in grass carp (Ctenopharyngodon idella). Front. Immunol., 13.