Curtasu M.V., Knudsen K.E.B., Callesen H., Purup S., Stagsted J., Hedemann M.S. (2019). Obesity development in a miniature Yucatan pig model: a multi-compartmental metabolomics study on cloned and normal pigs fed restricted or ad libitum high-energy diets. J. Proteome Res., 18: 30–47.
Dawson H.D., Chen C., Gaynor B., Shao J., Urban J.F. Jr (2017). The porcine translational research database: a manually curated, genomics and proteomics-based research resource. BMC Genom., 18: 643.
Jura J., Słomski R., Smorąg Z., Gajda B., Wieczorek J., Lipiński D., Kalak R., Juzwa W., Zeyland J. (2006). Production of pigs used in xenotransplantation (in Polish). Biotechnologia, 1: 151–158.
Kochanowska I., Hampel-Osipowicz E., Waloszczyk P. (2008). Menkes disease – genetic defect in copper metabolism (in Polish). Neurologia Dziecięca, 17: 63–67.
Kottaisamy C.P.D., Raj D.S., Kumar P.V., Sankaran U. (2021). Experimental animal models for diabetes and its related complications – a review. Lab. Anim. Res., 37: 23.
Lee M.-S., Song K.-D., Yang H.-J., Chester D., Solis C.D., Kim S.- H., Lee W.-K. (2012). Development of a type II diabetic mellitus animal model using Micropig®. Lab. Anim. Res., 28: 205–208.
Manini A., Abati E., Nuredini A., Corti S., Comi G.P. (2021). Adeno-associated virus (AAV)-mediated gene therapy for Duchenne muscular dystrophy: The issue of transgene persistence. Front. Neurol., 12: 814174.
McCarron A., Parsons D., Donnelley M. (2021). Animal and cell culture models for cystic fibrosis: which model is right for your application? Am. J. Pathol., 191: 228–242.
Mine K., Yoshikai Y., Takahashi H., Mori H., Anzai K., Nagafuchi S. (2020). Genetic susceptibility of the host in virus-induced diabetes. Microorganisms, 8: 1133.
Pang H., Chen S., Klyne D.M., Harrich D., Ding W., Yang S., Han F.Y. (2023). Low back pain and osteoarthritis pain: a perspective of estrogen. Bone Res., 11: 42.
Sariyatun R., Kajiura H., Ohashi T, Misaki R., Fujiyam K. (2021). Production of human acid-alpha glucosidase with a pauciman-nose structure by glycoengineered Arabidopsis cell culture. Front. Plant Sci., 12: 703020.
Skarysz J., Bochenek M. (2006). Użycie serca transgenicznych świń w układzie heterologicznym z zastosowaniem krwi ludzkiej – doświadczenia wlasne (in Polish). In: Biotechnologiczne i medyczne podstawy ksenotransplantacji, Smorąg Z., Słomski R., Cierpka L. (eds). Poznań, Polska, Ośrodek Wydawnictw Naukowych, pp. 331–340.
Sundberg J.P., Rice R.H. (2023). Phenotyping mice with skin, hair, or nail abnormalities: A systematic approach and methodologies from simple to complex. Vet. Pathol., 60: 6.
Tanihara F., Hirata M., Nguyen N.T., Sawamoto O., Kikuchi T., Doi M., Otoi T. (2020) Efficient generation of GGTA1-deficient pigs by electroporation of the CRISPR/Cas9 system into in vitro-fertilized zygotes. BMC Biotechnol., 20: 40.
Wang J., Xie W., Li N, Li W., Zhang Z., Fan N., Ouyang Z., Zhao Y., Lai C., Li H., Chen M., Quan L., Li Y., Jiang Y., Jia W., Fu M., Mazid A., Zhu Y., Maxwell P.H., Pan G., Esteban M.A., Dai Z., Lai L. (2023). Generation of a humanized mesonephros in pigs from induced pluripotent stem cells via embryo complementation. Cell Stem. Cell., 30: 1235–1245.
Wiater J., Samiec M., Wartalski K., Smorąg Z., Jura J., Słomski R., Skrzyszowska M., Romek M. (2021). Characterization of monoand bi-transgenic pig-derived epidermal keratinocytes expressing human FUT2 and GLA genes – in vitro studies. Int. J. Mol. Sci., 22: 9683.
Zeng F., Liao S., Kuang Z., Zhu G., Wei H., Shi J., Zheng E., Xu Z., Huang S., Hong L., Gu T., Yang J., Yang H., Cai G., Moisyadi S., Urschitz J., Li Z., Wu Z. (2022). Genetically engineered pigs as efficient salivary gland bioreactors for production of therapeutically valuable human nerve growth factor. Cells, 11: 2378.
Zeng L., Hu S., Zeng L., Chen R., Li H., Yu J., Yang H. (2023). Animal models of ischemic stroke with different forms of middle cerebral artery occlusion. Brain Sci., 13: 1007.
Zhang B., Wang C., Zhang Y., Jiang Y., Qin Y., Pang D., Zhang G., Liu H., Xie Z., Yuan H., Ouyang H., Wang J., Tang X. (2023). A CRISPR-engineered swine model of COL2A1 deficiency recapitulates altered early skeletal developmental defects in humans. Bone, 137: 115450.