Have a personal or library account? Click to login

Animal Models for the Treatment of Human Diseases – A Review

By:
Open Access
|Oct 2024

References

  1. Chen C.S., Squire J.A., Wells P.G. (2009). Reduced tumorigenesis in p53 knockout mice exposed in utero to low vitamin E. Cancer, 115: 1563–1575.
  2. Crawford D.K., Mullenders J., Pott J., Boj S.F., Landskroner-Eiger S., Goddeeris M.M. (2021). Targeting G542X CFTR nonsense alleles with ELX-02 restores CFTR function in human-derived intestinal organoids. J. Cystic Fibros., 20: 436–442.
  3. Curtasu M.V., Knudsen K.E.B., Callesen H., Purup S., Stagsted J., Hedemann M.S. (2019). Obesity development in a miniature Yucatan pig model: a multi-compartmental metabolomics study on cloned and normal pigs fed restricted or ad libitum high-energy diets. J. Proteome Res., 18: 30–47.
  4. Dai Y., Vaught T.D., Boone J., Chen S.-H., Phelps C.J., Ball S., Monahan J.A., Jobst P.M., McCreath K.J., Lamborn A.E., Cowell-Lucero J.L., Wells K.D., Colman A., Polejaeva I.A., Ayares D.L. (2002). Targeted disruption of the α1,3- galactosyltransferase gene in cloned pigs. Nat. Biotechnol., 20: 251–255.
  5. Dawson H.D., Chen C., Gaynor B., Shao J., Urban J.F. Jr (2017). The porcine translational research database: a manually curated, genomics and proteomics-based research resource. BMC Genom., 18: 643.
  6. Dorin J.R., Dickinson P., Alton E.W., Smith S.N., Geddes D.M., Stevenson B.J., Kimber W.L., Fleming S., Clarke A.R, Hooper M.L. et al. (1992). Cystic fibrosis in the mouse by targeted insertional mutagenesis. Nature, 359: 211–215.
  7. Gaina G., Popa (Gruianu) A. (2021). Muscular dystrophy: experimental animal models and therapeutic approaches (review). Exp. Ther. Med., 21: 610.
  8. Jura J., Słomski R., Smorąg Z., Gajda B., Wieczorek J., Lipiński D., Kalak R., Juzwa W., Zeyland J. (2006). Production of pigs used in xenotransplantation (in Polish). Biotechnologia, 1: 151–158.
  9. Khorramizadeh M.R., Saadat F. (2020). Animal models for human disease. Anim. Biotechnol., 2020: 153–171.
  10. Kinter J., Sinnreich M. (2014). Molecular targets to treat muscular dystrophies. Swiss Med. Wkly., 144: 13916.
  11. Knosalla C. (2018) Success for cross-species heart transplants. Nature, 564: 352–353.
  12. Kochanowska I., Hampel-Osipowicz E., Waloszczyk P. (2008). Menkes disease – genetic defect in copper metabolism (in Polish). Neurologia Dziecięca, 17: 63–67.
  13. Konnova E.A., Swanberg M., Stoker T.B., Greenland J.C. (2018). Editors. Animal models of Parkinson’s disease. In: Parkinson’s Disease: Pathogenesis and Clinical Aspects [Internet]. Brisbane (AU): Codon Publications, Chapter 5.
  14. Kottaisamy C.P.D., Raj D.S., Kumar P.V., Sankaran U. (2021). Experimental animal models for diabetes and its related complications – a review. Lab. Anim. Res., 37: 23.
  15. Lee M.-S., Song K.-D., Yang H.-J., Chester D., Solis C.D., Kim S.- H., Lee W.-K. (2012). Development of a type II diabetic mellitus animal model using Micropig®. Lab. Anim. Res., 28: 205–208.
  16. Lenartowicz M., Krzeptowski W., Lipiński P., Grzmil P., Starzyński R., Pierzchała O., Møller L.B. (2015). Mottled mice and non-mammalian models of Menkes disease. Front. Mol. Neurosci., 8: 72.
  17. Leo D., Gainetdinov R.R. (2013). Transgenic mouse models for ADHD. Cell Tissue Res., 354: 259–271.
  18. Manini A., Abati E., Nuredini A., Corti S., Comi G.P. (2021). Adeno-associated virus (AAV)-mediated gene therapy for Duchenne muscular dystrophy: The issue of transgene persistence. Front. Neurol., 12: 814174.
  19. Matsuhisa F., Kitajima S., Nishijima K., Akiyoshi T., Morimoto M., Fan J. (2020). Transgenic rabbit models: now and the future. Appl. Sci., 10: 7416.
  20. McCarron A., Parsons D., Donnelley M. (2021). Animal and cell culture models for cystic fibrosis: which model is right for your application? Am. J. Pathol., 191: 228–242.
  21. Mine K., Yoshikai Y., Takahashi H., Mori H., Anzai K., Nagafuchi S. (2020). Genetic susceptibility of the host in virus-induced diabetes. Microorganisms, 8: 1133.
  22. Mukherjee P., Roy S., Ghosh D., Nandi S.K. (2022). Role of animal models in biomedical research: a review. Lab. Anim. Res., 38: 18.
  23. Pang H., Chen S., Klyne D.M., Harrich D., Ding W., Yang S., Han F.Y. (2023). Low back pain and osteoarthritis pain: a perspective of estrogen. Bone Res., 11: 42.
  24. Phelps C.J., Koike C., Vaught T.D., Boone J., Wells K.D., Chen S.-H., Ball S., Specht S.M., Polejaeva I.A., Monahan J.A., Jobst P.M., Sharma S.B., Lamborn A.E., Garst A.S., Moore M., Demetris A.J., Rudert W.A., Bottino R., Bertera S., Trucco M., Starzl T.E., Dai Y., Ayares D.L. (2003). Production of α1,3-galactosyltransferase-deficient pigs. Science, 299: 411–414.
  25. Sariyatun R., Kajiura H., Ohashi T, Misaki R., Fujiyam K. (2021). Production of human acid-alpha glucosidase with a pauciman-nose structure by glycoengineered Arabidopsis cell culture. Front. Plant Sci., 12: 703020.
  26. Sharma J., Abbott J., Klaskala L., Zhao G., Birket S.E., Rowe S.E. (2020). A novel G542X CFTR rat model of cystic fibrosis is sensitive to nonsense mediated decay. Front. Physiol., 11: 611249.
  27. Skarysz J., Bochenek M. (2006). Użycie serca transgenicznych świń w układzie heterologicznym z zastosowaniem krwi ludzkiej – doświadczenia wlasne (in Polish). In: Biotechnologiczne i medyczne podstawy ksenotransplantacji, Smorąg Z., Słomski R., Cierpka L. (eds). Poznań, Polska, Ośrodek Wydawnictw Naukowych, pp. 331–340.
  28. Sundberg J.P., Rice R.H. (2023). Phenotyping mice with skin, hair, or nail abnormalities: A systematic approach and methodologies from simple to complex. Vet. Pathol., 60: 6.
  29. Tanihara F., Hirata M., Nguyen N.T., Sawamoto O., Kikuchi T., Doi M., Otoi T. (2020) Efficient generation of GGTA1-deficient pigs by electroporation of the CRISPR/Cas9 system into in vitro-fertilized zygotes. BMC Biotechnol., 20: 40.
  30. Wang J., Xie W., Li N, Li W., Zhang Z., Fan N., Ouyang Z., Zhao Y., Lai C., Li H., Chen M., Quan L., Li Y., Jiang Y., Jia W., Fu M., Mazid A., Zhu Y., Maxwell P.H., Pan G., Esteban M.A., Dai Z., Lai L. (2023). Generation of a humanized mesonephros in pigs from induced pluripotent stem cells via embryo complementation. Cell Stem. Cell., 30: 1235–1245.
  31. Wiater J., Samiec M., Wartalski K., Smorąg Z., Jura J., Słomski R., Skrzyszowska M., Romek M. (2021). Characterization of monoand bi-transgenic pig-derived epidermal keratinocytes expressing human FUT2 and GLA genes – in vitro studies. Int. J. Mol. Sci., 22: 9683.
  32. Yue Y., Xu W., Kan Y., Zhao H. Y., Zhou Y., Song X., et al. (2021). Extensive germline enome engineering in pigs. Nat. Biomed. Eng., 5: 134–143.
  33. Zeng F., Liao S., Kuang Z., Zhu G., Wei H., Shi J., Zheng E., Xu Z., Huang S., Hong L., Gu T., Yang J., Yang H., Cai G., Moisyadi S., Urschitz J., Li Z., Wu Z. (2022). Genetically engineered pigs as efficient salivary gland bioreactors for production of therapeutically valuable human nerve growth factor. Cells, 11: 2378.
  34. Zeng L., Hu S., Zeng L., Chen R., Li H., Yu J., Yang H. (2023). Animal models of ischemic stroke with different forms of middle cerebral artery occlusion. Brain Sci., 13: 1007.
  35. Zhang B., Wang C., Zhang Y., Jiang Y., Qin Y., Pang D., Zhang G., Liu H., Xie Z., Yuan H., Ouyang H., Wang J., Tang X. (2023). A CRISPR-engineered swine model of COL2A1 deficiency recapitulates altered early skeletal developmental defects in humans. Bone, 137: 115450.
  36. https://www.fda.gov/news-events/press-announcements/fda-approves-first-its-kind-intentional-genomic-alteration-line-domestic-pigs-both-human-food
  37. https://nyulangone.org/news/pig-kidney-xenotransplantation-performing-optimally-after-32-days-human-body
  38. https://www.science.org/content/article/early-stage-human-kidneys-grown-pigs-first-time
DOI: https://doi.org/10.2478/aoas-2024-0058 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1153 - 1159
Submitted on: Nov 6, 2023
Accepted on: Apr 26, 2024
Published on: Oct 24, 2024
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Jacek Jura, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.