Have a personal or library account? Click to login

Effect of Lincomycin and Butyrate Glycerides Supplementation on Performance, Blood Biochemical Constituents, Immune Response and Nutrient Absorption Related Gene Expression in Broilers

Open Access
|Jan 2024

References

  1. Abd El-Hack M.E., Ashour E.A., Arif M., Chaudhry M.T., Emam M., Khafaga A.F., Taha A.E., Más D., Dhama K., Farag M.R., Alagawany M. (2021). Organic acids as eco-friendly growth promoters in poultry feed. In: Natural feed additives used in the poultry industry, Alagawany M., Abd El-Hack M.E. (eds). Bentham Science Publishers Pte. Ltd. Singapore.
  2. Ahsan U., CengİZ Ö., Raza I., Kuter E., Chacher M.F.A., Iqbal Z., Umar S., ÇAkir S. (2016). Sodium butyrate in chicken nutrition: the dynamics of performance, gut microbiota, gut morphology, and immunity. World. Poult. Sci. J., 72: 265–275.
  3. Ali S.A., Hasan K.A., Bin Asif H., Abbasi A. (2014). Environmental enterococci: I. Prevalence of virulence, antibiotic resistance and species distribution in poultry and its related environment in Karachi, Pakistan. Lett. Appl. Microbiol. 58: 423–432.
  4. Almeida A.B., Araújo D.N., Strapazzon J.V., Rita C., Dilda A., Balen G., Deolindo G.L., Nesi D., Furlan V.J.M., Pelisser G., Mendes R.E., Fracasso M., Wagner R., Boiago M.M., Silva A.S.D. (2021). Use of blend based on an emulsifier, monolaurin, and glycerides of butyric acid in the diet of broilers: impacts on intestinal health, performance, and meat. An. Acad. Bras. Cienc., 93: e20210687.
  5. Antongiovanni M., Buccioni A., Petacchi F., Leeson S., Minieri S., Martini A., Cecchi R. (2007). Butyric acid glycerides in the diet of broiler chickens: effects on gut histology and carcass composition. It. J. Anim. Sci., 6: 19–25.
  6. Aviagen (2019). Ross Nutrition Specifications. Available at <www.aviagen.com> from http://es.aviagen.com/assets/Tech_Center/Ross_Broiler/RossBroilerNutritionSpecs2019-EN.pdf.
  7. Bassiony S.S., Al-Sagheer A.A., El-Kholy M.S., Elwakeel E.A., Helal A.A., Alagawany M. (2021). Evaluation of Enterococcus faecium NCIMB 11181 and Clostridium butyricum probiotic supplements in post-weaning rabbits reared under thermal stress conditions. It. J. Anim. Sci., 20: 1232–1243.
  8. Bedford A., Gong J. (2018). Implications of butyrate and its derivatives for gut health and animal production. Anim. Nutr., 4: 151–159.
  9. Bedford A., Yu H., Squires E.J., Leeson S., Gong J., (2017). Effects of supplementation level and feeding schedule of butyrate glycerides on the growth performance and carcass composition of broiler chickens. Poultry Sci., 96: 3221–3228.
  10. Bedford A., Yu H., Hernandez M., Squires E.J., Leeson S., Hou Y., Gong J. (2018 a). Response of Ross 308 and 708 broiler strains in growth performance and lipid metabolism to diets containing tributyrate glycerides. Can. J. Anim. Sci., 98: 98–108.
  11. Bedford A., Yu H., Hernandez M., Squires E.J., Leeson S., Gong J. (2018 b). Effects of fatty acid glyceride product SILOhealth 104 on the growth performance and carcass composition of broiler chickens. Poultry Sci., 97: 1315–1323.
  12. Broom L.J. (2015). Organic acids for improving intestinal health of poultry. World. Poult. Sci. J., 71: 630–642.
  13. Castanon J.I.R. (2007). History of the use of antibiotic as growth promoters in European poultry feeds. Poultry Sci., 86: 2466–2471.
  14. Chan G., Guthrie A., Sivaramalingam T., Wilson J., Vancraeynest D., Moody R., Clark S. (2015). A framework for assessing the efficacy of antimicrobials in the control of necrotic enteritis in broiler chickens. J. Appl. Poult. Res., 24: 246–256.
  15. Dalmasso G., Nguyen H.T., Yan Y., Charrier-Hisamuddin L., Sitaraman S.V., Merlin D. (2008). Butyrate transcriptionally enhances peptide transporter PepT1 expression and activity. PLoS One, 3: e2476.
  16. Decuypere J.A., Dierick N.A. (2003). The combined use of triacylglycerols containing medium-chain fatty acids and exogenous lipolytic enzymes as an alternative to in-feed antibiotics in piglets: concept, possibilities and limitations. An overview. Nutr. Res. Rev., 16: 193–210.
  17. Deepa K., Purushothaman M.R., Vasanthakumar P., Sivakumar K. (2018). Butyric acid as an antibiotic substitute for broiler chicken − A review. Adv. Anim. Vet. Sci., 6: 63–69.
  18. Ebeid T., Al-Homidan I., Fathi M., Al-Jamaan R., Mostafa M., Abou-Emera O., Abd El-Razik M., Alkhalaf A. (2021). Impact of probiotics and/or organic acids supplementation on growth performance, microbiota, antioxidative status, and immune response of broilers. It. J. Anim. Sci., 20: 2263–2273.
  19. Ebeid T.A., Al-Homidan I.H. (2022). Organic acids and their potential role for modulating the gastrointestinal tract, antioxidative status, immune response, and performance in poultry. World. Poult. Sci. J., 78: 83–101.
  20. El-Saadony M.T., Umar M., Hassan F.-U., Alagawany M., Arif M., Taha A.E., Elnesr S.S., El-Tarabily K.A., Abd El-Hack M.E. (2022). Applications of butyric acid in poultry production: the dynamics of gut health, performance, nutrient utilization, egg quality, and osteoporosis. Anim. Health Res. Rev., 23: 136–146.
  21. Eshak M.G., Elmenawey M.A., Atta A., Gharib H.B., Shalaby B., Awaad M.H. (2016). The efficacy of Na-butyrate encapsulated in palm fat on performance of broilers infected with necrotic enteritis with gene expression analysis. Vet. World., 9: 450–457.
  22. Farag M.R., Alagawany M., Abd El-Hack M.E., Elnesr S.S., Moustafa G.G., Dhama K., El-Sharkawy N.I. (2021). Antibiotics as growth promoters in poultry feeding. In: Natural feed additives used in the poultry industry, Alagawany M., Abd El-Hack M.E. (eds). Bentham Science Publishers Pte. Ltd. Singapore.
  23. Fernández-Rubio C., Ordóñez C., Abad-González J., Garcia-Gallego A., Honrubia M.P., Mallo J.J., Balaña-Fouce R. (2009). Butyric acid-based feed additives help protect broiler chickens from Salmonella Enteritidis infection. Poultry Sci., 88: 943–948.
  24. Greenwood D., Norrby S.R., Whitley R.J. (2004). Antibiotic and chemotherapy: anti-infective agents and their use in therapy. Philadelphia (PA): Churchill Livingstone.
  25. Gu T., Duan M., Liu J., Chen L., Tian Y., Xu W., Zeng T., Lu L. (2022). Effects of tributyrin supplementation on liver fat deposition, lipid levels and lipid metabolism-related gene expression in broiler chickens. Genes (Basel), 13: 2219.
  26. Guilloteau P., Martin L., Eeckhaut V., Ducatelle R., Zabielski R., Van Immerseel F. (2010). From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr. Res. Rev., 23: 366–384.
  27. Kaczmarek S.A., Barri A., Hejdysz M., Rutkowski A. (2016). Effect of different doses of coated butyric acid on growth performance and energy utilization in broilers. Poultry Sci., 95: 851–859.
  28. Leeson S., Namkung H., Antongiovanni M., Lee E.H. (2005). Effect of butyric acid on the performance and carcass yield of broiler chickens. Poultry Sci., 84: 1418–1422.
  29. Letlole B.R., Damen E., Jansen van Rensburg C. (2021). The effect of α-monolaurin and butyrate supplementation on broiler performance and gut health in the absence and presence of the antibiotic growth promoter zinc bacitracin. Antibiotics (Basel), 10: 651.
  30. Lin Q., Liu Y., Li L., Huai M., Wang Y., Lv T., Zhao H., Jiang G., Wang X., Liu C., Qiu H., Dai Q. (2022). Effects of a mixture of monoglycerides of butyric-, capric-, and caprylic acid with chlortetracycline on the growth performance, intestine morphology, and cecal microflora of broiler birds. Poultry Sci., 101: 101617.
  31. Liu J.D., Bayir H.O., Cosby D.E., Cox N.A., Williams S.M., Fowler J. (2017 a). Evaluation of encapsulated sodium butyrate on growth performance, energy digestibility, gut development, and Salmonella colonization in broilers. Poultry Sci., 96: 3638–3644.
  32. Liu M., Guo W., Wu, F., Qu Q., Tan Q., Gong W. (2017 b). Dietary supplementation of sodium butyrate may benefit growth performance and intestinal function in juvenile grass carp (Ctenopharyngodon idellus). Aquacult. Res., 48: 4102–4111.
  33. Livak K.J., Schmittgen T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods, 25: 402–408.
  34. Makowski Z., Lipiński K., Mazur-Kuśnirek M. (2022). The effects of sodium butyrate, coated sodium butyrate, and butyric acid glycerides on nutrient digestibility, gastrointestinal function, and fecal microbiota in turkeys. Animals (Basel), 12: 1836.
  35. Melaku M., Zhong R., Han H., Wan F., Yi B., Zhang H. (2021). Butyric and citric acids and their salts in poultry nutrition: effects on gut health and intestinal microbiota. Int. J. Mol. Sci., 22: 10392.
  36. Mohamed A. (2016). Concurrent uses of diclazuril and lincomycin for controlling of severe necrotic enteritis in broiler chicks. Master Thesis, Faculty of Veterinary Medicine, Zagazig University, Zagazug, Egypt.
  37. OIE (2008). Manual of diagnostic tests and vaccines for terrestrial animals. Paris, France, Office international des epizooties.
  38. Panda A.K., Rao S.V.R., Raju M.V.L.N., Sunder G.S. (2009). Effect of butyric acid on performance, gastrointestinal tract health and carcass characteristics in broiler chickens. Asian-Australas. J. Anim. Sci., 22: 1026–1031.
  39. Pearlin B.V., Muthuvel S., Govidasamy P., Villavan M., Alagawany M., Farag M.R., Dhama K., Marappan G. (2020). Role of acidifiers in livestock nutrition and health: A review. J. Anim. Physiol. Anim Nutr., 104: 558–569.
  40. Peng L., Li Z.R., Green R.S., Holzman I.R., Lin J. (2009). Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr., 139: 1619–1625.
  41. Raza M., Biswas A., Mir N.A., Mandal A.B. (2019). Butyric acid as a promising alternative to antibiotic growth promoters in broiler chicken production. J. Agri. Sci., 157: 55–62.
  42. Richard M.J., Portal B., Meo J., Coudray C., Hadjian A., Favier A. (1992). Malondialdehyde kit evaluated for determining plasma and lipoprotein fractions that react with thiobarbituric acid. Clin. Chem., 38: 704–709.
  43. Saleh A. (2013). Effects of fish oil on the production performances, polyunsaturated fatty acids and cholesterol levels of yolk in hens. Emirates J. Food Agri., 25: 605–612.
  44. Saleh A.A., Ebeid T.A. (2019). Feeding sodium selenite and nano-selenium stimulates growth and oxidation resistance in broilers. South Afr. J. Anim. Sci., 49:176–184.
  45. Saleh A.A., Gálik B., Arpášová H., Capcarová M., Kalafová A., Šimko M., Juráček M., Rolinec M., Bíro D., Abudabos A.M. (2017). Synergistic effect of feeding Aspergillus awamori and lactic acid bacteria on performance, egg traits, egg yolk cholesterol and fatty acid profile in laying hens. Ital. J. Anim. Sci., 16: 132–139.
  46. Saleh A.A., El-Far A.H., Abdel-Latif M.A., Emam M.A., Ghanem R., Abd El-Hamid H.S. (2018). Exogenous dietary enzyme formulations improve growth performance of broiler chickens fed a low-energy diet targeting the intestinal nutrient transporter genes. PLoS ONE, 13: e0198085.
  47. Saleh A.A., Kirrella A.A., Abdo S.E., Mousa M.M., Badwi N.A., Ebeid T.A., Nada A.L., Mohamed M.A. (2019). Effects of dietary xylanase and arabinofuranosidase combination on the growth performance, lipid peroxidation, blood constituents, and immune response of broilers fed low-energy diets. Animals, 9: 467.
  48. Saleh A.A., Paray B.A., Dawood M.A. (2020). Olive cake meal and Bacillus licheniformis impacted the growth performance, muscle fatty acid content, and health status of broiler chickens. Animals, 10: 695.
  49. Saleh A.A., Yassin M., El-Naggar K., Alzawqari M.H., Albogami S., Mohamed Soliman M., Shukry M., Farrag F., Kirrella A.A. (2022). Effect of dietary supplementation of humic acid and lincomycin on growth performance, nutrient digestibility, blood biochemistry, and gut morphology in broilers under clostridium infection. J. Appl. Anim. Res., 50: 440–452.
  50. Sun X., McElroy A., Webb K.E., Sefton A.E., Novak C. (2005). Broiler performance and intestinal alterations when fed drug-free diets. Poultry Sci., 84: 1294–1302.
  51. Sunkara L.T., Achanta M., Schreiber N.B., Bommineni Y.R., Dai G., Jiang W., Lamont S., Lillehoj H.S., Beker A., Teeter R.G., Zhang G. (2011). Butyrate enhances disease resistance of chickens by inducing antimicrobial host defense peptide gene expression. PLoS One, 6: e27225.
  52. Sunkara L.T., Jiang W., Zhang G. (2012). Modulation of antimicrobial host defense peptide gene expression by free fatty acids. PLoS One, 7: e49558.
  53. Yang X., Yin F., Yang Y., Lepp D., Yu H., Ruan Z., Yang C., Yin Y., Hou Y., Leeson S., Gong J. (2018). Dietary butyrate glycerides modulate intestinal microbiota composition and serum metabolites in broilers. Sci. Rep., 8: 4940.
  54. Yin F., Yu H., Lepp D., Shi X., Yang X., Hu J., Leeson S., Yang C., Nie S., Hou Y., Gong J. (2016). Transcriptome analysis reveals regulation of gene expression for lipid catabolism in young broilers by butyrate glycerides. PLoS One, 11: e0160751.
  55. Zhang W.H., Jiang Y., Zhu Q.F., Gao F., Dai S.F., Chen J., Zhou G.H. (2011). Sodium butyrate maintains growth performance by regulating the immune response in broiler chickens. Brit. Poult. Sci., 52: 292–301.
DOI: https://doi.org/10.2478/aoas-2024-0001 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 191 - 199
Submitted on: Jul 8, 2023
Accepted on: Oct 25, 2023
Published on: Jan 23, 2024
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Ahmed A. Saleh, Ibrahim A. Elkhaiat, Abdul Rahman A. Alkhamisi, Mustafa Shukry, Karima El-Naggar, Mohammed H. Alzawqari, Mahmoud Alagawany, Abeer A. Kirrella, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.