Have a personal or library account? Click to login
Involvement of Aberrant DNA Methylation in the Deregulated Expression of EHF, LPAR1, MPZL3, and POPDC2 Genes in Equine Sarcoids Cover

Involvement of Aberrant DNA Methylation in the Deregulated Expression of EHF, LPAR1, MPZL3, and POPDC2 Genes in Equine Sarcoids

Open Access
|Jan 2024

References

  1. Amunjela J.N., Tucker S.J. (2017). POPDC1 is suppressed in human breast cancer tissues and is negatively regulated by EGFR in breast cancer cell lines. Cancer Lett., 406: 81–92.
  2. Amunjela J.N., Swan A.H., Brand T. (2019). The role of the popeye domain containing gene family in organ homeostasis. Cells, 8: 1594.
  3. Cheng Z., Guo J., Chen L., Luo N., Yang W., Qu X. (2016). Knockdown of EHF inhibited the proliferation, invasion and tumorigenesis of ovarian cancer cells. Mol. Carcinog., 55: 1048–1059.
  4. Cochrane C.A. (1997). Models in vivo of wound healing in the horse and the role of growth factors. Vet. Dermatol., 8: 259–272.
  5. Cui R., Cao G., Bai H., Zhang Z. (2019). LPAR1 regulates the development of intratumoral heterogeneity in ovarian serous cyst-adenocarcinoma by activating the PI3K/AKT signaling pathway. Cancer Cell Int., 19: 201.
  6. Dutta S., Wang F.Q., Wu H.S., Mukherjee T.J., Fishman D.A. (2011). The NF-κB pathway mediates lysophosphatidic acid (LPA)-induced VEGF signaling and cell invasion in epithelial ovarian cancer (EOC). Gynecol. Oncol., 123: 129–137.
  7. Farré D., Roset R., Huerta M., Adsuara J.E., Roselló L., Albà M.M., Messeguer X. (2003). Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res., 31: 3651.
  8. Feng Q., Hawes S.E., Stern J.E., Wiens L., Lu H., Zhao M.D., Jordan C.D., Kiviat N.B., Vesselle H. (2008). DNA methylation in tumor and matched normal tissues from non-small cell lung cancer patients. Cancer Epidemiol, Biomarkers Prev., 17: 645–654.
  9. Funiciello B., Roccabianca P. (2020). Equine Sarcoid. In: Equine Science, Rutland C., Rizvanov A. (eds). IntechOpen.
  10. Geraldo L.H.M., Spohr T.C.L.S., Amaral R.F.D., Fonseca A.C.C.D., Garcia C., Mendes F.A., Freitas C., dosSantos M.F., Lima F.R.S. (2021). Role of lysophosphatidic acid and its receptors in health and disease: novel therapeutic strategies. Signal Transduct. Target Ther., 6: 45.
  11. Hainisch E.K., Jindra C., Reicher P., Miglinci L., Brodesser D.M., Brandt S. (2022). Bovine papillomavirus type 1 or 2 virion-infected primary fibroblasts constitute a near-natural equine sarcoid model. Viruses, 14: 2658.
  12. Hanson R.R. (2008). Complications of equine wound management and dermatologic surgery. Vet. Clin. North Am. Equine Pract., 24: 663–696.
  13. Huang R., Li L., Wang Z., Shen K. (2022). A systemic pan-cancer analysis of MPZL3 as a potential prognostic biomarker and its correlation with immune infiltration and drug sensitivity in breast cancer. Front. Oncol., 12: 3839.
  14. Jindra C., Hainisch E.K., Brandt S. (2023). Immunotherapy of equine sarcoids − from early approaches to innovative vaccines. Vaccines (Basel), 11: 769.
  15. Jjingo D., Conley A.B., Yi S. V., Lunyak V. V., King Jordan I. (2012). On the presence and role of human gene-body DNA methylation. Oncotarget, 3: 462.
  16. Kaleibar M.T., Eshghi D., Helan J.A. (2015). A survey on the status of equine skin tumors and associated epidemiological factors in Iran. Comp. Clin. Path., 24: 1407–1415.
  17. Kim M., Jang H.R., Haam K., Kang T.W., Kim J.H., Kim S.Y., Noh S.M., Song K.S., Cho J.S., Jeong H.Y., Kim J.C., Yoo H.S., Kim Y.S. (2010). Frequent silencing of popeye domain-containing genes, BVES and POPDC3, is associated with promoter hyper-methylation in gastric cancer. Carcinogenesis, 31: 1685–1693.
  18. Knottenbelt D.C. (2005). A suggested clinical classification for the equine sarcoid. Clin. Tech. Equine Pract., 4: 278–295.
  19. Leakey T.I., Zielinski J., Siegfried R.N., Siegel E.R., Fan C.Y., Cooney C.A. (2008). A simple algorithm for quantifying DNA methylation levels on multiple independent CpG sites in bisulfite genomic sequencing electropherograms. Nucleic Acids Res., 36: e64.
  20. Lian B.S.X., Kawasaki T., Kano N., Ori D., Ikegawa M., Isotani A., Kawai T. (2022). Regulation of Il6 expression by single CpG methylation in downstream of Il6 transcription initiation site. iScience, 25: 104118.
  21. Lin Y.H., Lin Y.C., Chen C.C. (2021). Lysophosphatidic acid receptor antagonists and cancer: The current trends, clinical implications, and trials. Cells, 10: 1629.
  22. Mallona I., Díez-Villanueva A., Peinado M.A. (2014). Methylation plotter: A web tool for dynamic visualization of DNA methylation data. Source Code. Biol. Med., 9: 1–5.
  23. Messeguer X., Escudero R., Farré D., Núñez O., Martínez J., Albà M.M. (2002). PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics, 18: 333–334.
  24. Nasir L., Campo M.S. (2008). Bovine papillomaviruses: their role in the aetiology of cutaneous tumours of bovids and equids. Vet. Dermatol., 19: 243–254.
  25. Nishiyama A., Nakanishi M. (2021). Navigating the DNA methylation landscape of cancer. Trends. Genet., 37: 1012–1027.
  26. Okano M., Bell D.W., Haber D.A., Li E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 99: 247–257.
  27. Park S.Y., Jeong K.J., Panupinthu N., Yu S., Lee J., Han J.W., Kim J.M., Lee J.S., Kang J., Park C.G., Mills G.B., Lee H.Y. (2011). Lysophosphatidic acid augments human hepatocellular carcinoma cell invasion through LPA1 receptor and MMP-9 expression. Oncogene, 30: 1351–1359.
  28. Pawlina-Tyszko K., Gurgul A., Szmatoła T., Ropka-Molik K., Semik-Gurgul E., Klukowska-Rötzler J., Koch C., Mählmann K., Bugno-Poniewierska M. (2017). Genomic landscape of copy number variation and copy neutral loss of heterozygosity events in equine sarcoids reveals increased instability of the sarcoid genome. Biochimie, 140: 122–132.
  29. Semik E., Gurgul A., Ząbek T.Z., Ropka-Molik K., Koch C., Mähl-mann K., Bugno-Poniewierska M. (2017). Transcriptome analysis of equine sarcoids. Vet. Comp. Oncol., 15: 1370–1381.
  30. Semik-Gurgul E. (2021). Molecular approaches to equine sarcoids. Equine Vet. J., 53: 221–230.
  31. Semik-Gurgul E., Szmatoła T., Gurgul A., Pawlina-Tyszko K., Gałuszka A., Pędziwiatr R., Witkowski M., Ząbek T. (2023). Methylome and transcriptome data integration reveals aberrantly regulated genes in equine sarcoids. Biochimie, 213: 100–113.
  32. Shi J., Jiang D., Yang S., Zhang X., Wang J., Liu Y., Sun Y., Lu Y., Yang K. (2020). LPAR1, correlated with immune infiltrates, is a potential prognostic biomarker in prostate cancer. Front. Oncol., 10: 846.
  33. Sobiak B., Leśniak W. (2019). The effect of single CpG demethylation on the pattern of DNA-protein binding. Int. J. Mol. Sci., 20: 914.
  34. Tsujiuchi T., Okabe K., Fukushima N. (2011). Genetic and epigenetic alterations of lysophosphatidic acid receptor genes in rodent tumors by experimental models. J. Toxicol. Pathol., 24: 143.
  35. Vohra M., Adhikari P., Souza S.C.D., Nagri S.K., Umakanth S., Satyamoorthy K., Rai P.S. (2020 a). CpG-SNP site methylation regulates allele-specific expression of MTHFD1 gene in type 2 diabetes. Lab. Invest., 100: 1090–1101.
  36. Vohra M., Sharma A.R., Prabhu B.N., Rai P.S. (2020 b). SNPs in sites for DNA methylation, transcription factor binding, and miRNA targets leading to allele-specific gene expression and contributing to complex disease risk: A systematic review. Pub. Health Genom., 23: 155–170.
  37. Wang L., Ai M., Nie M., Zhao Li, Deng G., Hu S., Han Y., Zeng W., Wang Y., Yang M., Wang S. (2020). EHF promotes colorectal carcinoma progression by activating TGF-β1 transcription and canonical TGF-β signaling. Cancer Sci., 111: 2310–2324.
  38. Wang Q., Xiong F., Wu G., Liu W., Chen J., Wang B., Chen Y. (2022). Gene body methylation in cancer: molecular mechanisms and clinical applications. Clin. Epigenet., 14: 1–14.
  39. Yang X., Han H., DeCarvalho D.D., Lay F.D., Jones P.A., Liang G. (2014). Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell, 26: 577–590.
  40. Yegnasubramanian S., Haffner M.C., Zhang Y., Gurel B., Cornish T.C., Wu Z., Irizarry R.A., Morgan J., Hicks J., DeWeese T.L., Isaacs W.B., Bova G.S., De Marzo A.M., Nelson W.G. (2008). DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res., 68: 8954–8967.
  41. Yuan Z.Q., Gobeil P.A.M., Campo M.S., Nasir L. (2010). Equine sarcoid fibroblasts over-express matrix metalloproteinases and are invasive. Virology, 396: 143–151.
  42. Yung Y.C., Stoddard N.C., Chun J. (2014). Thematic review series: lysophospholipids and their receptors: LPA receptor signaling: pharmacology, physiology, and pathophysiology. J. Lipid. Res., 55: 1192.
DOI: https://doi.org/10.2478/aoas-2023-0078 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 99 - 107
Submitted on: Apr 3, 2023
Accepted on: Jul 6, 2023
Published on: Jan 23, 2024
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Ewelina Semik-Gurgul, Artur Gurgul, Klaudia Pawlina-Tyszko, Anna Gałuszka, Rafał Pędziwiatr, Maciej Witkowski, Tomasz Ząbek, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.