Al-Amoudi M.M. (1987). The effects of high salt diet on the direct transfer of the Oreochromis mossambicus, O. spilurus, O. niloticus hybrids to sea water. Aquaculture, 64: 333–338.
Alves G.F.O., Fernandes A.F.A., Alvarenga E.R., Turra E.M., Sousa A.B., Teixeira E.A. (2017). Effect of the transfer at different moments of juvenile Nile tilapia (Oreochromis niloticus) to the biofloc system in formation. Aquaculture, 479: 564–570.
APHA (2005). American Water Works Association, Water Pollution Control Association. Standard Methods for the Examination of Water and Wastewater (21st ed.). American Public Health Association, Washington, DC, USA.
Avnimelech Y., Kochba M. (2009) Evaluation of nitrogen uptake and excretion by tilapia in biofloc tanks, using N-15 tracing. Aquaculture, 287: 163–168.
Azim M.E., Little D.C. (2008). The bioflocs technology (BFT) in indoor tanks: Water quality, bioflocs composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283: 29–35.
Bakhshi F., Najdegerami E.H., Manaffar R., Tukmechi A., Farah K.R. (2018). Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio L.) fingerlings. Aquaculture, 484: 259–267.
Barman U.K., Jana S.N., Garg S.K., Bhatnagar A., Arasu A.R.T. (2005). Effect of inland water salinity on growth, feed conversion efficiency and intestinal enzyme activity in growing grey mullet, Mugil cephalus (Linn.): field and laboratory studies. Aquac. Int., 13: 241–256.
Binalshikh-Abubkr T., Hanafiah M.M., Das S.K. (2021). Proximate chemical composition of dried shrimp and tilapia waste bioflocs produced by two drying methods. J. Mar. Sci. Eng., 9: 193.
Coyle S.D., Bright L.A., Wood D.R., Neal R.S., Tidwell J.H. (2011). Performance of Pacific white shrimp, Litopenaeus vannamei, reared in zero-exchange tank systems exposed to different light sources and intensities. J. World Aquacult. Soc., 42: 687–695.
Crab R., Chielens B., Wille M., Bossier P., Verstraete W. (2010). The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquac Res., 41: 559–567.
Dawood M., Koshio S., Ishikawa M., Yokoyama S. (2016). Effects of dietary inactivated Pediococcus pentosaceus on growth performance, feed utilization and blood characteristics of red sea bream, Pagrus major juvenile. Aquac. Nutr., 22: 923–932.
de Alvarenga E.R., Alves G.F.D.O., Fernandes A.F.A., Costa G.R., da Silva M.A., Teixeira E., Turra E.M. (2018). Moderate salinities enhance growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in the biofloc system. Aquac Res., 49: 2919–2926.
de Lima P.C.M., Silva L.O.B., de Lima Abreu J., da Silva S.M.B.C., Severi W., Gálvez A.O. (2019). Tilapia cultivated in a low-salinity biofloc system supplemented with Chlorella vulgaris and differents molasses application rates. Bol. Ins. Pesca, 45: e494
De Schryver P., Verstraete W. (2009). Nitrogen removal from aqua-culture pond water by heterotrophic nitrogen assimilation in lab-scale sequencing batch reactors. Bioresour. Technol., 100: 1162–1167.
de Souza R.L., de Lima E.C.R., de Melo F.P., Ferreira M.G.P., Correia E. (2019). The culture of Nile tilapia at different salinities using a biofloc system. Rev. Ciênc. Agron., 50: 267–275.
Decamp O., Cody J., Conquest L., Delanoy G., Tacon A. G. (2003). Effect of salinity on natural community and production of Litopenaeus vannamei (Boone), within experimental zero-water exchange culture systems. Aquac Res., 34: 345–355.
Durigon E.G., Lazzari R., Uczay J., Lopes D.L.D.A., Jerônimo G.T., Sgnaulin T., Emerenciano M.G.C. (2020). Biofloc technology (BFT): Adjusting the levels of digestible protein and digestible energy in diets of Nile tilapia juveniles raised in brackish water. Aquacult. Fish., 5: 42–51.
Ebeling J.M., Timmons M.B., Bisogni J.J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, 257: 346–358.
Ekasari J., Crab R., Verstraete W. (2010). Primary nutritional content of bioflocs cultured with different organic carbon sources and salinity. J. Biosci., 17: 125–130.
Ekasari J., Napitupulu A.D., Djurstedt M., Wiyoto W., Baruah K., Kiessling A. (2023). Production performance, fillet quality and cost effectiveness of red tilapia (Oreochromis sp.) culture in different biofloc systems. Aquaculture, 563: Part 2, 738956.
Emerenciano M., Gaxiola G., Cuzon G. (2013). Biofloc technology (BFT): a review for aquaculture application and animal food industry. In: Biomass now – cultivation and utilization, Matovic M.D. (ed.). In Tech, Queen’s University, Belfast, Canada, pp. 301–328.
Emerenciano M.G.C., Martínez-Córdova L.R., Martínez-Porchas M., Miranda-Baeza A. (2017). Biofloc technology (BFT): A tool for water quality management in aquaculture. In: Water Quality, Hlanganani T. (ed.). InTech, Rijeka, pp. 91–109.
Emerenciano M.G.C., Fitzsimmons K., Rombenso A.N., Miranda-Baeza A., Martins G.B., Lazzari R., Fimbres-Acedo Y.E., Pinho S.M. (2021). Biofloc technology (bft) in tilapia culture. In book: Biology and aquaculture of tilapia. CRC Press/Taylor and Francis Group.
Figueiredo J.P., de Morais A.P.M., da Silva W.A., Rafae R.E.Q., Santos I., Martins M.L., Vieira F.D., Belettini F., Andreatta E.R. (2022). Salinity in the culture of Nile tilapia in a biofloc system: Influence on growth and hematological parameters. Int. Aquat. Res., 14: 139–146.
Fridman S., Bron J., Rana K. (2012). Influence of salinity on embryo-genesis, survival, growth and oxygen consumption in embryos and yolk-sac larvae of the Nile tilapia. Aquaculture, 334–337: 182–190.
Gaona C.A.P., de Almeida M.S., Viau V., Poersch L.H., Wasielesky W. (2017). Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation. Aquac Res., 48: 1070–1079.
Haraz Y.G., Shourbela R.M., El-Hawarry W.N., Mansour A.M., Elblehi S.S. (2023). Performance of juvenile Oreochromis niloticus raised in conventional and biofloc technology systems as influenced by probiotic water supplementation. Aquaculture, 566: 739180.
Hari B., Kurup B.M., Varghese J.T., Schrama J.W., Verdegem M.C.J. (2006). The effect of carbohydrate addition on water quality and the nitrogen budget in extensive shrimp culture systems. Aquaculture, 252: 248–263.
Hersi M.A., Genc E., Pipilos A., Keskin E. (2023). Effects of dietary synbiotics and biofloc meal on the growth, tissue histomorphology, whole-body composition and intestinal microbiota profile of Nile tilapia (Oreochromis niloticus) cultured at different salinities. Aquaculture, 570: 739391.
Iqbal K.J., Qureshi N.A., Ashraf M., Rehman M.H.U., Khan N., Javid A., Abbas F., Mushtaq M., Rasool F., Majeed H., Visions A. (2012). Effect of different salinity levels on growth and survival of Nile tilapia (Oreochromis niloticus). J. Anim. Plant Sci., 22: 919–922.
Jalali M., Davoodi R., Movahedinia A.A., Zadeh S.A.M. (2013). A comparative study on body composition of shyrbot (Barbus grypus) fish reared in different salinities. Elixir Aquacult., 60: 16318–16320.
Ju Z., Forster I., Conquest L., Dominy W. (2008). Enhanced growth effects on shrimp (Litopenaeus vannamei) from inclusion of whole shrimp floc or floc fractions to a formulated diet. Aquac. Nutr., 14: 533–543.
Kamal A.H.M.M., Mair G.C. (2005). Salinity tolerance in superior genotypes of tilapia, Oreochromis niloticus, Oreochromis moss-ambicus and their hybrids. Aquaculture, 247: 189–201.
Kamrani E., Sharifinia M., Hashemi S.H. (2016). Analyses of fish community structure changes in three subtropical estuaries from the Iranian coastal waters. Marine Biodiv., 46: 561–577.
Khanjani M.H., Sharifinia M. (2021). Production of Nile tilapia Oreochromis niloticus reared in a limited water exchange system: The effect of different light levels. Aquaculture, 542: 736912.
Khanjani M.H., Sharifinia M., (2022 a). Biofloc technology with addition molasses as carbon sources applied to Litopenaeus vannamei juvenile production under the effects of different C/N ratios. Aquacult. Int., 30: 383–397.
Khanjani M.H., Sharifinia M. (2022 b). Biofloc as a food source for banana shrimp (Fenneropenaeus merguiensis) postlarvae. N. Am. J. Aquac., 45: 469–479.
Khanjani M.H., Sajjadi M., Alizadeh M., Sourinejad I. (2016). Study on nursery growth performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) under different feeding levels in zero water exchange system. Iran. J. Fish. Sci., 15: 1465–1484.
Khanjani M.H., Alizadeh M., Sharifinia M. (2020). Rearing of the Pacific white shrimp, Litopenaeus vannamei in a biofloc system: The effects of different food sources and salinity levels. Aquac. Nutr., 26: 328–337.
Khanjani M.H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021). The effect of adding molasses in different times on performance of Nile tilapia (Oreochromis niloticus) raised in a lowsalinity biofloc system. Ann. Anim. Sci., 21: 1435–1454.
Khanjani M.H., Sharifinia M., Ghaedi G. (2022 a). β-glucan as a promising food additive and immunostimulant in aquaculture industry. Ann. Anim. Sci., 22: 817–827.
Khanjani M.H., Eslami J., Ghaedi G., Sourinejad I., (2022 b). The effects of different stocking densities on nursery performance of banana shrimp (Fenneropenaeus merguiensis) reared under biofloc condition. Ann. Anim. Sci., 22: 1291–1299.
Khanjani M.H., Zahedi S., Mohammadi A. (2022 d). Integrated multitrophic aquaculture (IMTA) as an environmentally friendly system for sustainable aquaculture: functionality, species, and application of biofloc technology (BFT). Environ. Sci. Pollut. Res., 29: 67513–67531.
Khanjani M.H., Torfi Mozanzade M., Sharifinia M., Emerenciano M.G.C. (2023 a). Biofloc: A sustainable dietary supplement, nutritional value and functional properties. Aquaculture, 562: 738757.
Khanjani M.H., da Silva L.O.B., Foes G.K., Vieira F.D., Poli M., Santos M., Emerenciano M.G.C. (2023 b). Synbiotics and aquamimicry as alternative microbial-based approaches in intensive shrimp farming and biofloc: Novel disruptive techniques or complementary management tools? A scientific-based overview. Aquaculture, 567: 739273.
Khanjani M.H., Sharifinia M., Emerenciano M.G.C. (2023 c). A detailed look at the impacts of biofloc on immunological and hematological parameters and improving resistance to diseases. Fish Shellfish Immunol., 137:108796.
Kumari S., Harikrishna V., Surasani V.K.R., Balange A.K., Babitha Rani A.M. (2021). Growth, biochemical indices and carcass quality of red tilapia reared in zero water discharge based biofloc system in various salinities using inland saline ground water. Aqua-culture, 540: 736730.
Kumolu-Johnson C.A., Ndimele P.E. (2010). Length-weight relationships and condition factors of twenty-one fish species in Ologe Lagoon, Lagos, Nigeria. Asian J. Agric. Sci., 4: 174–179.
Likongwe J.S., Stecko T.D., Stauffer J.R., Carline R.F. (1996). Combined effects of water temperature and salinity on growth and feed utilization of juvenile Nile tilapia Oreochromis niloticus (Linneaus). Aquaculture, 146: 37–46.
Lima P.C., Abreu J.L., Silva A.E., Severi W., Galvez A.O., Brito L.O. (2018). Nile tilapia fingerling cultivated in a low-salinity biofloc system at different stocking densities. Span. J. Agric. Res., 16: e0612–e0612.
Loureiro C.K., Wasielesky W.Jr., Abreu P.C. (2012). The use of protozoan, rotifers and nematodes as live food for shrimp raised in BFT system. Atlantica, Rio Grande, 34: 5–12.
Luo G., Gao Q., Wang C., Liu W., Sun D., Li L., Tan H. (2014). Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422–423: 1–7.
Luo G., Li W., Tan H., Chen X. (2017). Comparing salinities of 0, 10 and 20 in biofloc genetically improved farmed tilapia (Oreochromis niloticus) production systems. Aquac. Fish, 2: 220–226.
Ma X.C., Li X.K., Wang X.W., Liu G.G., Zuo J.L., Wang S.T., Wang K. (2020). Impact of salinity on anaerobic microbial community structure in high organic loading purified terephthalic acid waste-water treatment system. J. Hazard. Mat., 383: 121–132.
Maicá P.F., Borba M.R.D., Martins T.G., Wasielesky W. (2014). Effect of salinity on performance and body composition of Pacific white shrimp juveniles reared in a super-intensive system. Rev. Bras. de Zootec., 43: 343–350.
Martínez-Córdova L.R., Emerenciano M.G.C., Miranda-Baeza A., Martínez-Porchas M. (2015). Microbial-based systems for aqua-culture of fish and shrimp: An updated review. Rev. Aquacult., 7: 131–148.
Minabi K., Sourinejad I., Alizadeh M., Rajabzadeh Ghatrami E., Khanjani M.H. (2020). Effects of different carbon to nitrogen ratios in the biofloc system on water quality, growth, and body composition of common carp (Cyprinus carpio L.) fingerlings. Aquac. Int., 28: 1883–1898.
Minaz M., Yazıcı İ.S., Sevgili H., Aydın İ. (2023). Biofloc technology in aquaculture: Advantages and disadvantages from social and applicability perspectives, Ann. Anim. Sci., DOI: 10.2478/aoas-2023-0043.
Mirzakhani N., Ebrahimi E., Jalali S.A.H., Ekasari J. (2019). Growth performance, intestinal morphology and nonspecific immunity response of Nile tilapia (Oreochromis niloticus) fry cultured in biofloc systems with different carbon sources and input C:N ratios. Aquaculture, 512: 734235.
Mohammady E.Y., Soaudy M.R., Ali M.M., El-ashry M.A., Abd El-Karim M.S., Jarmołowicz S., Hassaan M.S. (2023). Response of Nile tilapia under biofloc system to floating or sinking feed and feeding rates: Water quality, plankton community, growth, intestinal enzymes, serum biochemical and antioxidant status. Aquac. Rep., 29: 101489.
Morado C.N., Araújo F. G., Gomes I.D. (2017). The use of biomarkers for assessing effects of pollutant stress on fish species from a tropical river in Southeastern Brazil. Acta Sci., 39: 431–439.
Nootong K., Pavasant P., Powtongsook S. (2011). Effects of organic carbon addition in controlling inorganic nitrogen concentrations in a biofloc system. J. World Aquac. Soc., 42: 339–346.
Ohta M., Watanabe T. (1996). Energy requirement for maintenance of body weight and activity for maximum growth in rainbow trout. Fish. Sci., 62: 737–744.
Perez-Velazquez M., González-Félix M.L., Gómez-Jiménez S., Davis D.A., Miramontes-Higuera N. (2008). Nitrogen budget for a low-salinity, zero-water exchange culture system: II. Evaluation of isonitrogenous feeding of various dietary protein levels to Litopenaeus vannamei (Boone). Aquac. Res., 39: 995–1004.
Rakocy J.E., Bailey D.S., Thoman E.S., Shultz R.C. (2004). Intensive tank culture of tilapia with a suspended, bacterial-based, treatment process. new dimensions on farmed tilapia. Proc. Sixth International Symposium on Tilapia in aquaculture, Manila, The Philippines, pp. 584–598.
Schofield P.J., Peterson M.S., Lowe M.R., Brown-Peterson N.J., Slack W.T. (2011). Survival, growth and reproduction of non-indigenous Nile tilapia, Oreochromis niloticus (Linnaeus 1758). I. Physiological capabilities in various temperatures and salinities. Mar. Freshw. Res., 62: 439–449.
Sharifinia M., Penchah M.M., Mahmoudifard A., Gheibi A., Zare R. (2015). Monthly variability of chlorophyll-α concentration in Persian Gulf using remote sensing techniques. Sains Malays., 44: 387–397.
Sharifinia M., Bahmanbeigloo Z.A., Keshavarzifard M., Khanjani M.H., Daliri M., Koochaknejad E., Jasour M.S. (2023). The effects of replacing fishmeal by mealworm (Tenebrio molitor) on digestive enzymes activity and hepatopancreatic biochemical indices of Litopenaeus vannamei. Ann. Anim. Sci., 23: 519–528.
Tao N.P., Wang L.Y., Gong X., Liu Y. (2012). Comparison of nutritional composition of farmed pufferfish muscles among Fugu obscurus, Fugu flavidus and Fugu rubripes. J. Food Compos. Anal., 28: 40–45.
Tubin J.S.B., Paiano D., de Oliveira Hashimoto G.S., Furtado W.E., Martins M.L., Durigon E., Emerenciano M.G.C. (2020). Tenebrio molitor meal in diets for Nile tilapia juveniles reared in biofloc system. Aquaculture, 519: 734763.
Widanarni Ekasari J., Maryam S. (2012). Evaluation of biofloc technology application on water quality and production performance of red tilapia Oreochromis sp. cultured at different stocking densities. Hayati J. Biosci., 19: 73–80.
Wu L., Liang H., Hamunjoa C.M.K., Ge X., Ji K., Yu H., Huang D., Xu H., Ren M. (2021). Culture salinity alters dietary protein requirement, whole body composition and nutrients metabolism related genes expression in juvenile genetically improved farmed tilapia (GIFT) (Oreochromis niloticus). Aquaculture, 531: 735961.
Xu J., Yan B., Teng Y., Lou G., Lu Z. (2010). Analysis of nutrient composition and fatty acid profiles of Japanese sea bass Lateolabrax japonicus (Cuvier) reared in seawater and freshwater. J. Food Compos. Anal., 23: 401–405.
Xu W.J., Pan L.Q. (2012). Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture, 356: 147–152.
Yeganeh V., Sharifinia M., Mobaraki S., Dashtiannasab A., Aeinjamshid K., Borazjani J.M., Maghsoudloo T. (2020). Survey of survival rate and histological alterations of gills and hepatopancreas of the Litopenaeus vannamei juveniles caused by exposure of Margalefidinium/Cochlodinium polykrikoides isolated from the Persian Gulf. Harmful Algae, 97: 101856.
Zhang N., Luo G.Z., Tan H.X., Liu W.C., Hou Z.W. (2016). Growth, digestive enzyme activity and welfare of tilapia (Oreochromis niloticus) reared in a biofloc-based system with poly-ß-hydroxybutyric as a carbon source. Aquaculture, 264: 710–717.