Have a personal or library account? Click to login
Hermetia illucens as a Source of Antimicrobial Peptides – A Review of in vitro and in vivo Studies Cover

Hermetia illucens as a Source of Antimicrobial Peptides – A Review of in vitro and in vivo Studies

Open Access
|Jan 2024

References

  1. Antimicrobial Peptide Database https://aps.unmc.edu/
  2. Biasato I., Ferrocino I., Dabbou S., Evangelista R., Gai F., Gasco L., Cocolin L., Capucchio M. T., Schiavone A. (2020). Black soldier fly and gut health in broiler chickens: insights into the relationship between cecal microbiota and intestinal mucin composition. J. Anim. Sci. Biotechnol., 11: 1–12.
  3. Bovera F., Loponte R., Pero M. E., Cutrignelli M. I., Calabrò S., Musco N., Vassalotti G., Panettieri V., Pietro Lombardi P., Piccolo G., Di Meo C., Siddi G., Fliegerova K., Moniello G. (2018). Laying performance, blood profiles, nutrient digestibility and inner organs traits of hens fed an insect meal from Hermetia illucens larvae. Res. Vet. Sci., 120: 86–93.
  4. Bulet P., Stocklin R. (2005). Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept. Lett., 12: 3–11.
  5. Bulet P., Hetru C., Dimarcq J. L., Hoffmann D. (1999). Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol., 23: 329–344.
  6. Buonocore F., Fausto A.M., Della Pelle G., Roncevic T., Gerdol M., Picchietti S. (2021). Attacins: A promising class of insect antimicrobial peptides. Antibiotics, 10: 212.
  7. Carlsson A., Nyström T., de Cock H., Bennich H. (1998). Attacin − an insect immune protein-binds LPS and triggers the specific inhibition of bacterial outer-membrane protein synthesis. Microbiology, 144: 2179–2188.
  8. Choi W.H., Yu, J.H., Chu J.P., Chu K.B. (2012). Antibacterial effect of extracts of Hermetia illucens (Diptera: Stratiomyidae) larvae against gram-negative bacteria. Entomol. Res., 42: 219–226.
  9. Ebenhan T., Gheysens O., Kruger H.G., Zeevaart J.R., Sathekge M.M. (2014). Antimicrobial peptides: their role as infection-selective tracers for molecular imaging. Biomed. Res. Int., 2014.
  10. Elhag O., Zho D., Song Q., Soomro A.A., Cai M., Zheng L., Yu Z., Zhang J. (2017). Screening, expression, purification, and functional characterization of novel antimicrobial peptide genes from Hermetia illucens (L.). PLoS One, 12: e0169582.
  11. Ganz T., Lehrer R.I. (1995). Defensins. Pharmacol. Therapeut., 66: 191–205.
  12. Grela E.R., Skomiał J. (2020). Zalecenia żywieniowe i wartość pokarmowa pasz dla świń (in Polish). The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland.
  13. Griminger P., Scanes C.G. (1986). Protein metabolism. In: Avian Physiology, Sturkie, P.D. (ed.). Springer, New York, NY, pp. 326–344.
  14. Gul S.T., Alsayeqh A.F. (2022). Probiotics as an alternative approach to antibiotics for safe poultry meat production. Pak. Vet. J., 42: 285–291.
  15. Hoffmann J.A., Hetru C. (1992). Insect defensins: inducible antibacterial peptides. Immunol. Today, 13: 411–415.
  16. Hong Y., Zhou J., Yuan M.M., Dong H., Cheng G.Q., Wang Y.J., Xia J.Y., Zhang L. (2020). Dietary supplementation with housefly (Musca domestica) maggot meal in growing beagles: hematology, serum biochemistry, immune responses, and oxidative damage. Ann. Anim. Sci., 20: 1351–1364.
  17. Józefiak A., Engberg R.M. (2017). Insect proteins as a potential source of antimicrobial peptides in livestock production. A review. J. Anim. Feed Sci., 26: 87–99.
  18. Józefiak A., Kierończyk B., Rawski M., Mazurkiewicz J., Benzertiha A., Gobbi P., Nogales-Mérida S., Świątkiewicz S., Józefiak D. (2018). Full-fat insect meals as feed additive − the effect on broiler chicken growth performance and gastrointestinal tract microbiota. J. Anim. Feed Sci., 27: 131–139.
  19. Kierończyk B., Rawski M., Mikołajczak Z., Leciejewska N., Józefiak D. (2022). Hermetia illucens fat affects the gastrointestinal tract selected microbial populations, their activity, and the immune status of broiler chickens. Ann. Anim. Sci., 22: 663–675.
  20. Lai Y., Gallo R.L. (2009). AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol., 30: 131–141.
  21. Langen G., Imani J., Altincicek B., Kieseritzky G., Kogel K.H., Vilcinskas A. (2006). Transgenic expression of gallerimycin, a novel antifungal insect defensin from the greater wax moth Galleria mellonella, confers resistance to pathogenic fungi in tobacco, Biol. Chem., 387: 549–557.
  22. Lata S., Sharma B.K., Raghava G.P. (2007). Analysis and prediction of antibacterial peptides. BMC Bioinform., 8: 1–10.
  23. Lee K.S., Yun E.Y., Goo T.W. (2020). Antimicrobial activity of an extract of Hermetia illucens larvae immunized with Lactobacillus casei against Salmonella species. Insects, 11: 704.
  24. Li B., Yang N., Wang X., Hao Y., Mao R., Li Z., Wang Z., Teng D., Wang J. (2020). An enhanced variant designed from DLP4 cationic peptide against Staphylococcus aureus CVCC 546. Front Microbiol., 11:1057.
  25. Li Z., Mao R., Teng D., Hao Y., Chen H., Wang X., Wang X., Jang N., Wang J. (2017). Antibacterial and immunomodulatory activities of insect defensins-DLP2 and DLP4 against multidrug-resistant Staphylococcus aureus. Sci. Rep., 7: 1–16.
  26. Looft T., Johnson T.A., Allen H.K., Bayles D.O., Alt D.P., Stedtfeld R.D., Sul W.J., Stedtfeld T.M., Chai B., Cole J.R., Hashsham S.A., Tiedje J.M., Stanton, T.B. (2012). In-feed antibiotic effects on the swine intestinal microbiome. Proc. Natl. Acad. Sci. U. S. A., 109: 1691–1696.
  27. Loponte R., Nizza S., Bovera F., De Riu N., Fliegerova K., Lombardi P., Vassalotti G., Vincenzo Mastellone V., Moniello G. (2017). Growth performance, blood profiles and carcass traits of Barbary partridge (Alectoris barbara) fed two different insect larvae meals (Tenebrio molitor and Hermetia illucens). Res. Vet. Sci., 115: 183–188.
  28. Makwana P., Rahul K., Ito K., Subhadra B. (2023). Diversity of antimicrobial peptides in silkworm. Life, 13: 1161.
  29. Malik F., Nawaz M., Anjum A.A., Firyal S., Shahid M.A., Irfan S., Ahmed F., Bhatti A.A. (2022). Molecular characterization of antibiotic resistance in poultry gut origin enterococci and horizontal gene transfer of antibiotic resistance to Staphylococcus aureus. Pak. Vet. J., 42: 383–389.
  30. Marono S., Loponte R., Lombardi P., Vassalotti G., Pero M.E., Russ F., Gasco L., Parisi G., Piccolo G., Nizza S., Meo C. Di, Attia Y.A., Bovera F. (2017). Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age. Poultry Sci., 96: 1783–1790.
  31. Matsue M., Mori Y., Nagase S., Sugiyama Y., Hirano R., Ogai K., Ogura K., Kurihara S., Okamoto S. (2019). Measuring the antimicrobial activity of lauric acid against various bacteria in human gut microbiota using a new method. Cell Transplant., 28: 1528–1541.
  32. Moore A.J., Devine D.A., Bibby M.C. (1994). Preliminary experimental anticancer activity of cecropins. Peptide Res., 7: 265–269.
  33. Moretta A., Salvia R., Scieuzo C., Di Somma A., Vogel H., Pucci P., Sgambato A., Wolff M., Falabella P. (2020). A bioinformatic study of antimicrobial peptides identified in the Black Soldier Fly (HI) Hermetia illucens (Diptera: Stratiomyidae). Sci. Rep., 10: 1–14.
  34. Müller A., Wolf D., Gutzeit H.O. (2017). The black soldier fly, Hermetia illucens − a promising source for sustainable production of proteins, lipids and bioactive substances. Z. Naturforsch. C J. Biosci., 72: 351–363.
  35. Mylonakis E., Podsiadlowski L., Muhammed M., Vilcinskas A. (2016). Diversity, evolution and medical applications of insect antimicrobial peptides. Philos. Trans. R. Soc. Lond. B Biol. Sci., 371: 20150290.
  36. Oonincx D.G.A.B., van Ltterbeeck J., Heetkamp M.J.W., van den Brand H., van Loon J.J.A., van Huis A. (2011). An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. Plos ONE, 5: e14445.
  37. Park S.I., Yoe S.M. (2017 a). A novel cecropin-like peptide from black soldier fly, Hermetia illucens: Isolation, structural and functional characterization. Entomol. Res., 47: 115–124.
  38. Park S.I., Yoe S.M. (2017 b). Defensin-like peptide3 from black soldier fly: Identification, characterization, and key amino acids for anti-Gram-negative bacteria. Entomol. Res., 47: 41–47.
  39. Park S.I., Kim J.W., Yoe S.M. (2015). Purification and characterization of a novel antibacterial peptide from black soldier fly (Hermetia illucens) larvae. Dev. Comp. Immunol., 52: 98–106.
  40. Reátegui J., Barriga X., Obando A., Moscoso G., Manrique P., Salazar I. (2020). Hermetia illucens larva (Diptera: Stratiomyidae) meal as a protein ingredient for partial replacement of soybean meal in the feed of Cavia porcellus (guinea pig): effect on the consumption, weight gain, and feed conversion. Sci. Agropecu., 11: 513–519.
  41. Saeed S.I., Mergani A., Aklilu E., Kamaruzzaman N.F. (2022). Antimicrobial peptides: bringing solution to the rising threats of antimicrobial resistance in livestock. Front. Vet. Sci., 9: 319.
  42. Scieuzo C., Giglio F., Rinaldi R., Lekka M.E., Cozzolino F., Monaco V., Monti M., Salvia R., Falabella P. (2023). In vitro evaluation of the antibacterial activity of the peptide fractions extracted from the hemolymph of Hermetia illucens (Diptera: Stratiomyidae). Insects, 14: 464.
  43. Shin H.S., Park S.I. (2019). Novel attacin from Hermetia illucens: cDNA cloning, characterization, and antibacterial properties. Prep. Biochem. Biotechnol., 49: 279–285.
  44. Spranghers T., Michiels J., Vrancx J., Ovyn A., Eeckhout M., De Clercq P., De Smet S. (2018). Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Anim. Feed Sci. Technol., 235: 33–42.
  45. Sultana A., Luo H., Ramakrishna S. (2021). Harvesting of antimicrobial peptides from insect (Hermetia illucens) and its applications in the food packaging. Appl. Sci., 11: 6991.
  46. Szczepanik K., Furgał-Dierżuk I., Gala Ł., Świątkiewicz M. (2023). Effects of Hermetia illucens larvae meal and astaxanthin as feed additives on health and production indices in weaned pigs. Animals, 13: 163.
  47. Tang Q., Xu E., Wang Z., Xiao M., Cao S., Hu S., Wu Q., Xiong Y., Jiang Z., Wang F., Yang G., Wang L., Yi H. (2022). Dietary Hermetia illucens larvae meal improves growth performance and intestinal barrier function of weaned pigs under the environment of enterotoxigenic Escherichia coli K88. Front. Nutr., 8: 812011.
  48. Tonk M., Knorr E., Cabezas-Cruz A., Valdé J.J., Kollewe C., Vilcinskas A. (2015). Tribolium castaneum defensins are primarily active against Gram-positive bacteria. J. Invertebr. Pathol., 132: 208–215.
  49. Van Moll L., De Smet J., Paas A., Tegtmeier D., Vilcinskas A., Cos P., Van Campenhout L. (2022). In vitro evaluation of antimicrobial peptides from the black soldier fly (Hermetia illucens) against a selection of human pathogens. Microbiol. Spectr., 10: e01664–21.
  50. Vogel H., Müller A., Heckel D.G., Gutzeit H., Vilcinskas A. (2018). Nutritional immunology: diversification and diet-dependent expression of antimicrobial peptides in the black soldier fly Hermetia illucens. Dev. Comp. Immunol., 78: 141–148.
  51. Wang S., Zeng X., Yang Q., Qiao S. (2016). Antimicrobial peptides as potential alternatives to antibiotics in the food animal industry. Int. J. Mol. Sci., 17: 603.
  52. Wang Y.S., Shelomi M. (2017). Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods, 6: 91.
  53. Waśko A., Bulak P., Polak-Berecka M., Nowak K., Polakowski C., Bieganowski A. (2016). The first report of the physicochemical structure of chitin isolated from Hermetia illucens. Int. J. Biol. Macromol., 92: 316–320.
  54. Wu Q., Patočka J., Kuča K. (2018). Insect antimicrobial peptides, a mini review. Toxins, 10: 461.
  55. Xia J., Ge C., Yao H. (2021). Antimicrobial peptides from black soldier fly (Hermetia illucens) as potential antimicrobial factors representing an alternative to antibiotics in livestock farming. Animals, 11: 1937.
  56. Xu J., Luo X., Fang G., Zhan S., Wu J., Wang D., Huang Y. (2020). Transgenic expression of antimicrobial peptides from black soldier fly enhance resistance against entomopathogenic bacteria in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol., 127: 103487.
  57. Yeaman M.R., Yount N.Y. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev., 55: 27–55.
  58. Yu M., Li Z., Chen W., Rong T., Wang G., Ma X. (2019). Hermetia illucens larvae as a potential dietary protein source altered the microbiota and modulated mucosal immune status in the colon of finishing pigs. J. Anim. Sci. Biotechnol., 10: 1–16.
  59. Zasloff M. (1987). Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. U.S.A., 84: 5449–5453.
  60. Zasloff M., Martin B., Chen H.C. (1988). Antimicrobial activity of synthetic magainin peptides and several analogues. Proc. Natl. Acad. Sci. U.S.A., 85: 910–913.
  61. Zdybicka-Barabas A., Bulak P., Polakowski C., Bieganowski A., Waśko A., Cytryńska M. (2017). Immune response in the larvae of the black soldier fly Hermetia illucens. Invertebr. Surviv. J., 14: 9–17.
  62. Zhang J., Li J., Peng Y., Gao X., Song Q., Zhang H., Elhag O., Cai M., Zheng L., Yu Z., Zhang J. (2022). Structural and functional characterizations and heterogenous expression of the antimicrobial peptides, Hidefensins, from black soldier fly, Hermetia illucens (L.). Protein Expr. Purif., 192: 106032.
  63. Zhang L.J., Gallo R.L. (2016). Antimicrobial peptides. Curr. Biol., 26: R14–R19.
  64. Zhang Q.Y., Yan Z.B., Meng Y.M., Hong X.Y., Shao G., Ma J.J., Cheng X.R., Liu J., Kang J., Fu C.Y. (2021). Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil. Med. Res., 8: 1–25.
  65. Żyłowska M., Wyszyńska A., Jagusztyn-Krynicka E.K. (2011). Antimicrobial peptides – defensins (in Polish). Postępy Mikrobiol., 50: 223–234.
DOI: https://doi.org/10.2478/aoas-2023-0071 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 77 - 88
Submitted on: Feb 13, 2023
Accepted on: May 30, 2023
Published on: Jan 23, 2024
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Kinga Szczepanik, Małgorzata Świątkiewicz, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.