Have a personal or library account? Click to login

Assessment of Initial Investment Strategies for Different Farm-Scale Scenarios with Economic Cost Analyses in Offshore Salmon Farming

By:
Open Access
|Jan 2024

References

  1. Arru B., Furesi R., Gasco L., Madau F.A., Pulina P. (2019). The introduction of insect meal into fish diet: The first economic analysis on European sea bass farming. Sustainability, 11: 1697.
  2. Asche F., Roll K.H., Sandvold H.N., Sørvig A., Zhang D. (2013). Salmon aquaculture: Larger companies and increased production. Aquac. Econ. Manag., 17: 322–339.
  3. Bloecher N., Olsen Y., Guenther J. (2013). Variability of biofouling communities on fish cage nets: A 1-year field study at a Norwegian salmon farm. Aquaculture, 416–417: 302–309.
  4. Bozoglu M., Ceyhan V. (2009). Cost and profitability analysis for trout and sea bass production in the Black Sea. Turkey. J. Anim. Vet. Adv., 8: 217–222.
  5. Buyukates Y., Kesbiç O., Yigit M., Yilmaz S., Ergün S., Bulut M., Ozalp B. (2022). Temporal variations in hematological, immuno-logical and serum biochemical parameters of rainbow trout (Oncorhynchus mykiss) acclimated to high-saline water in the northern Aegean sea. Ann. Anim. Sci., 23: 97–106.
  6. Cacho O.J. (1997). Systems modelling and bioeconomic modelling in aquaculture. Aquac. Econ. Manag., 1: 45–64.
  7. CRS (2021). Global economic effects of COVID-19. Congressional Research Service Report, R46270 – Version 81, November 10, 2021. https://crsreports.congress.gov R46270
  8. Di Trapani A.M., Filippo S., Riccardo T., Salvatore T. (2014). Economic comparison between offshore and inshore aquaculture production systems of European sea bass in Italy. Aquaculture, 434: 334–339.
  9. Edwards P., Little D.C., Yakupitiyage A. (1997). A comparison of traditional and modified inland artisanal aquaculture systems. Aquac. Res., 28: 777–787.
  10. FAO (2022 a). The state of world fisheries and aquaculture 2022: Towards blue transformation. Rome, FAO. DOI: 10.4060/cc0461en.
  11. FAO (2022 b). Global aquaculture production. FAO Fisheries and Aquaculture Statistics. Online Query Panel. https://www.fao.org/fishery/statistics-query/en/aquaculture.
  12. FAO (2022 c). Global fish trade – by partner country value (2019–2020). FAO Fisheries and Aquaculture Statistics. Online Query Panel. https://www.fao.org/fishery/statistics-query/en/trade_partners/trade_partners_value.
  13. Fernández-Polanco J., Llorente I. (2019). Price transmission and market integration: Vertical and horizontal price linkages for gilthead seabream (Sparus aurata) in the Spanish market. Aquaculture, 506: 470–474.
  14. Fernández-Sánchez J.L., Llorente G.I., Luna M. (2020). Technical efficiency of sea bass and sea bream farming in the Mediterranean Sea by European firms: A stochastic production frontier (SPF) approach. Aquac. Econ. Manag., 24: 526–539.
  15. Fernández-Sánchez J.L., Llorente G.I., Basurco B., Aguilera C. (2022). Assessing the economic impact of key operational factors on grow-out farms producing European sea bass under different scenarios of production, Aquac. Econ. Manag., 26: 232–250.
  16. Ferreira J.G., Saurel C., Ferreira J.M. (2012). Cultivation of gilthead bream in monoculture and integrated multi-trophic aquaculture. Analysis of production and environmental effects by means of the FARM model. Aquaculture, 358–359: 23–34.
  17. Gasca-Leyva E., León CJ., Hernández JM., Vergara J.M. (2002). Bio-economic analysis of production location of sea bream (Sparus aurata) cultivation. Aquaculture, 213: 219–232.
  18. Grillone G., Baiamonte G., D’Asaro F. (2014). Empirical determination of the average annual runoff coefficient in the Mediterranean area. Am. J. Appl. Sci., 11: 89–95.
  19. Hadelan L., Par V., Njavro M., Lovrinov M. (2012). Real option approach to economic analysis of European sea bass (Dicetrarchus labrax) farming in Croatia. Agric. Conspec. Sci., 77: 161–165.
  20. Holmer M. (2010). Environmental issues of fish farming in offshore waters: perspectives, concerns and research needs. Aquacult. Environ. Interact., 1: 57–70.
  21. Kankainen M., Mikalsen R. (2014). Offshore fish farm investment and competitiveness in the Baltic Sea. AQUABEST, Reports of Aqua-best projects 2/2014. http://www.aquabestproject.eu/reports.aspx
  22. Klebert P., Lader P., Gansel L., Oppedal F. (2013). Hydrodynamic interactions on net panel and aquaculture fish cages: a review. Ocean Eng., 58: 260–274.
  23. Llorente I., Fernández-Polanco J., Baraibar-Diez E., Odriozola M.D., Bjørndal T., Asche F., Guillen J., Avdelas L., Nielsen R., Cozzolino M., Luna M., Fernández-Sánchez J.L., Luna L., Aguilera C., Basurco B. (2020). Assessment of the economic performance of the seabream and sea bass aquaculture industry in the European Union. Mar. Pol., 117: 103876.
  24. MGM (2022). Sea water temperature, Black Sea (Deniz Suyu Sıcaklıkları – Meteoroloji, Karadeniz). Çevre Şehircilik ve İklim Değişikliği Bakanlığı, Meteoroloji Genel Müdürlüğü (MGM). Retrieved November 5, 2022, from https://www.mgm.gov.tr/FILES/resmi-istatistikler/denizSuyu/Karadeniz-Deniz-Suyu-Sicakligi-Analizi-2021.pdf
  25. Mitra S., Khan M.A., Nielsen R. (2019). Credit constraints and aqua-culture productivity. Aquac. Econ. Manag., 23: 410–427.
  26. Pomeroy R., Bravo-Ureta B.E., Solís D., Johnston R.J. (2008). Bio-economic modelling and salmon aquaculture: an overview of the literature. Int. J. Environ. Pollut., 33: 485–500.
  27. Stankovicì D., Crivelli A.J., Snoj A. (2015). Rainbow trout in Europe: introduction, naturalization, and impacts. Rev. Fish. Sci. Aquac.,23: 39–71.
  28. TMAF (2020). Statement about “Naming Trouts as Salmon (Alabalıkların Somon olarak Adlandırılması Hk)” (Report No. 07.04.2020/40317327-010.07.01-E.1063921). General Directorate of Food and Control, Turkish Ministry of Agriculture and Forestry (TMAF).
  29. Torrissen O., Jones S., Asche F., Guttormsen A., Skilbrei O.T., Nilsen F., Horsberg T.E., Jackson D. (2013). Salmon lice – impact on wild salmonids and salmon aquaculture. J. Fish Dis., 36: 171–194.
  30. Turker A., Ergün S., Yigit M. (2004). Changes in blood ion levels and mortality rates in different sized rainbow trout (Oncorhynchus mykiss) following direct transfer to sea water. Isr. J. Aquac., 56: 51–58.
  31. Weygandt J.J., Kieso D.E., Kimmel P.D. (1999). Managerial accounting tools for business decision making. John Wiley & Sons.
  32. Yigit M. (1996). Gökkuşağı alabalıklarının (Oncorhynchus mykiss W.1792) denizsuyu ve tatlısudaki büyüme farklılıklarının karşılaştırılması. M.Sc. Thesis (in Turkish). Ondokuz Mayis University, Faculty of Fisheries, School of Natural and Applied Sciences, Samsun-Türkiye.
  33. Yigit M., Aral M.O. (1999). A comparison of the growth differences of Rainbow trout Oncorhynchus mykiss W 1792 in freshwater and seawater, the Black Sea. Turkish J. Vet. Anim. Sci., 23: 53–59.
  34. Yoğurtçuoğlu B., Bucak T., Ekmekçi F.G., Kaya C., Tarkan A.S. (2021). Mapping the establishment and invasiveness potential of rainbow trout (Onchorhynchus mykiss) in Turkey: with special emphasis on the conservation of native salmonids. Front. Ecol. Evol., 8: 599881.
DOI: https://doi.org/10.2478/aoas-2023-0066 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 223 - 234
Submitted on: Nov 10, 2022
Accepted on: May 23, 2023
Published on: Jan 23, 2024
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Ümüt Yigit, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.