Have a personal or library account? Click to login

The Ameliorative Effects of Dietary Rosemary (Rosmarinus officinalis) Against Growth Retardation, Oxidative Stress, and Immunosuppression Induced by Waterborne Lead Toxicity in Nile Tilapia Fingerlings

Open Access
|Jan 2024

References

  1. Abd El-kader A.I., Bahnasawy M., Zaky M., El-Serafy M.A. (2022). Assessment of heavy metals concentration in water and the Nile tilapia of Lake Manzala, EL-Kapoty, Egypt. Egypt. J. Aquat. Biol. Fish., 26: 137–147.
  2. Abdel Rahman A.N., ElHady M., Hassanin M.E., Mohamed A.A. (2019). Alleviative effects of dietary Indian lotus leaves on heavy metals-induced hepato-renal toxicity, oxidative stress, and histopathological alterations in Nile tilapia, Oreochromis niloticus (L.). Aquaculture, 509: 198–208.
  3. Abdel-Tawwab M., El-Sayed G.O., Monier M.N., Shady S.H. (2017 a). Dietary EDTA supplementation improved growth performance, biochemical variables, antioxidant response, and resistance of Nile tilapia, Oreochromis niloticus (L.) to environmental heavy metals exposure. Aquaculture, 473: 478–486.
  4. Abdel-Tawwab M., El-Sayed G.O., Shady S.H. (2017 b). Effect of dietary active charcoal supplementation on growth performance, biochemical and antioxidant responses, and resistance of Nile tilapia, Oreochromis niloticus (L.) to environmental heavy metals exposure. Aquaculture, 479: 17–24.
  5. Abdel-Tawwab M., Sharafeldin K.M., Ismaiel N.E.M. (2018). Interactive effects of coffee bean supplementation and waterborne zinc toxicity on growth performance, biochemical variables, antioxidant activity and zinc bioaccumulation in whole body of common carp, Cyprinus carpio L. Aquacult. Nutr., 24: 123–130.
  6. Abdel-Wahhab M.A., Aljawish A., Kenawy A.M., El-Nekeety A.A., Hamed H.S., Abdel-Aziem S.H. (2016). Grafting of gallic acid onto chitosan nano particles enhances antioxidant activities in vitro and protects against ochratoxin A toxicity in catfish (Clarias gariepinus). Environ. Toxicol. Pharmacol., 41: 279–288.
  7. Adimcilar V., Kalaycıoğlu Z., Aydoğdu N., Dirmenci T., Kahraman A., Erim F.B. (2019). Rosmarinic and carnosic acid contents and correlated antioxidant and antidiabetic activities of 14 Salvia species from Anatolia. J. Pharm. Biomed. Anal., 175: 112763.
  8. Aebi H. (1984). Catalase in vitro. Methods Enzymol., 105: 121–126.
  9. Ahmadifar E., Yousefi M., Karimi M., Raieni F.R., Dadar M., Yilmaz S., Dawood M.A.O., Abdel-Latif H.M.R. (2021). Benefits of dietary polyphenols and polyphenol-rich additives to aquatic animal health: an overview. Rev. Fish. Sci. Aquac., 29: 478–511.
  10. Albergoni V., Viola A. (1995). Effects of cadmium on catfish, Ictalurus melas, humoral immune response. Fish Shellfish Immunol., 5: 89–95.
  11. Ali A., Chua B.L., Chow Y.H. (2019). An insight into the extraction and fractionation technologies of the essential oils and bioactive compounds in Rosmarinus officinalis L.: past, present and future. Trac-Trends Anal. Chem., 118: 338–351.
  12. Allain C.C., Poon L.S., Chan C.S.G., Richmond W., Fu P.C. (1974). Enzymatic determination of total serum cholesterol. Clin. Chem., 20: 470–475.
  13. Ayoub H.F., El Tantawy M.M., Abdel-Latif H. (2019). Influence of moringa (Moringa oleifera) and rosemary (Rosmarinus officinalis), and turmeric (Curcuma longa) on immune parameters and challenge of Nile tilapia to Aeromonas hydrophila. Life Sci. J., 16: 8–15.
  14. Baş H., Kalender Y., Pandir D., Kalender S. (2015). Effects of lead nitrate and sodium selenite on DNA damage and oxidative stress in diabetic and non-diabetic rat erythrocytes and leucocytes. Environ. Toxicol. Pharmacol., 39: 1019–1026.
  15. Belfield A., Goldberg D. (1971). Colorimetric determination of alkaline phosphatase activity. Enzyme, 12: 561–566.
  16. Bengani R., Gadhia M., Ansari E. (2015). Accumulation of lead in the muscle of brackish water fish (Boleopthalmus dussumieri). J. Appl. Nat. Sci., 7: 662–665.
  17. Benzie I.F., Strain J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem., 239: 70–76.
  18. Bergmeyer H.U. (1974). Methods of Enzymatic Analysis. Verlag Chemie, Weinheim, Germany.
  19. Bhattacharyya A., Chattopadhyay R., Mitra S., Crowe S.E. (2014). Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev., 94: 329–354.
  20. Borges R.S., Ortiz B.L.S., Pereira A.C.M., Keita H., Carvalho J.C.T. (2019). Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J. Ethnopharmacol., 229: 29–45.
  21. Boyd C.E. (1984). Water quality in warm water fishponds. Auburn University Agriculture Experimental Station, Auburn, Alabama, USA.
  22. Brown B.A. (1980). Hematology: Principles and procedures. Lea and Febiger, Philadelphia, PA, USA.
  23. Dacie J.V., Lewis S.M. (1984). Practical haematology, 6th ed. Churchill Livingstone, London, UK.
  24. Dawood M.A., Abdel-Tawwab M., Abdel-Latif H.M.R. (2020). Lycopene reduces the impacts of aquatic environmental pollutants and physical stressors in fish. Rev. Aquacult., 12: 2511–2526.
  25. Dutta B., Sarma S.R., Deka P. (2015). Lead nitrate toxicity on haematological changes in a live fish species Channa punctatus (Bloch). Int. J. Fish. Aquat. Stud., 3: 196–198.
  26. Dytham C. (2011). Choosing and using statistics: a biologist’s guide. Blackwell Science Ltd., London, UK.
  27. El-Houseiny W., Khalil A.A., Abd-Elhakim Y.M., Badr H.A. (2019). The potential role of turmeric and black pepper powder diet supplements in reversing cadmium-induced growth retardation, ATP depletion, hepatorenal damage, and testicular toxicity in Clarias gariepinus. Aquaculture, 510: 109–121.
  28. Ellis A.E. (1990). Lysozyme assays. Tech. Fish Immunol., 1: 101–103.
  29. El-Sayed A.-F.M. (2019). Tilapia culture, 2nd ed. Academic Press, Elsevier Science Publishing Co Inc., San Diego, USA.
  30. Foster L., Dunn R. (1974). Single antibody technique for radioimmunoassay of cortisol in extracted serum or plasma. Clin. Chem., 20: 365.
  31. Ghiasi F., Mirzargar S.S., Badakhshan H., Shamsi S. (2010). Effects of low concentration of cadmium on the level of lysozyme in serum, leukocyte count and phagocytic index in Cyprinus carpio under the wintering conditions. J. Fish. Aquat. Sci., 5: 113–119.
  32. Giri S.S., Kim M.J., Kim S.G., Kim S.W., Kang J.W., Kwon J., Lee S.B., Jung W.J., Sukumaran V., Park S.C. (2021). Role of dietary curcumin against waterborne lead toxicity in common carp, Cyprinus carpio. Ecotoxicol. Environ. Saf., 219: 112318.
  33. Giri S.S., Yun S., Jun J.W., Kim H.J., Kim S.G., Kang J.W., Kim S.W., Han S.J., Sukumaran V., Park S.C. (2018). Therapeutic effect of intestinal autochthonous Lactobacillus reuteri P16 against water-borne lead toxicity in Cyprinus carpio. Front. Immunol., 9: 1824.
  34. Hamed H.S., Abdel-Tawwab M. (2021). Dietary pomegranate (Punica granatum) peel mitigated the adverse effects of silver nanoparticles on the performance, haemato-biochemical, antioxidant, and immune responses of Nile tilapia fingerlings. Aquaculture, 540: 736742.
  35. Hamed H.S., Osman A.G.M. (2017). Modulatory effect of lycopene against carbofuran toxicity in African catfish, Clarias gariepinus. Fish Pysiol. Biochem., 43: 1721–1731.
  36. Hamed H.S., Ismal S.M., Abdel-Tawwab M. (2022). Modulatory effects of dietary cinnamon (Cinnamomum zeylanicum) against waterborne lead toxicity in Nile tilapia fingerlings: Growth performance, haemato-biochemical, innate immunity, and hepatic antioxidant indices. Aquacult. Rep., 25: 101190.
  37. Henry R. (1964). Colorimetric determination of total protein. Clinical Chemistry. Harper and Row Publ., New York, USA.
  38. Hernández A., García García B., Caballero M.J., Hernández M.D. (2015). Preliminary insights into the incorporation of rosemary extract (Rosmarinus offinalis L.) in fish feed: influence on performance and physiology of gilthead seabream (Sparus aurata). Fish Physiol. Biochem., 41: 1065–1074.
  39. Ikeogu C.F., Nsofor C.I., Igwilo I.O., Ngene A.A. (2016). Haematological and serological responses of Clarias gariepinus to sub-lethal concentrations of lead nitrate. J. Pharm. Sci. Biosci. Res., 6: 442–446.
  40. Jaishankar M., Tseten T., Anbalagan N., Mathew B.B., Beeregowda K.N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol., 7: 60–72.
  41. Karatas T., Yildirim S., Arslan H., Aggul A.G. (2019). The effects on brown trout (Salmo trutta fario) of different concentrations of deltamethrin. Comp. Biochem. Physiol. (Part C), 226: 108606.
  42. Karatas T., Korkmaz F., Karataş A., Yildirim S. (2020). Effects of rosemary (Rosmarinus officinalis) extract on growth, blood biochemistry, immunity, antioxidant, digestive enzymes and liver histopathology of rainbow trout, Oncorhynchus mykiss. Aquacult. Nutr., 26: 1533–1541.
  43. Karatas T., Onalan S., Yildirim S. (2021). Effects of prolonged fasting on levels of metabolites, oxidative stress, immune-related gene expression, histopathology, and DNA damage in the liver and muscle tissues of rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem., 47: 1119–1132.
  44. Kiran Kumar E., Midhun S.J., Vysakh A., James T.J. (2021). Antagonistic effects of dietary Moringa oleifera on hematobiochemical and oxidative stress of lead nitrate intoxicated Nile tilapia, Oreochromis niloticus. Aquacult. Res., 52: 6164–6178.
  45. Koga K., Shibata H., Yoshino K., Nomoto K. (2006). Effects of 50% ethanol extract from rosemary (Rosmarinus officinalis) on α-glucosidase inhibitory activity and the elevation of plasma glucose level in rats, and its active compound. J. Food Sci., 71: 507–512.
  46. Kubiriza G.K., Árnarson J., Sigurgeirsson Ó., Hamaguchi P., Snorrason S., Tómasson T., Thorarensen H. (2019). Growth and hepatic antioxidant enzyme activity of juvenile Arctic charr (Salvelinus alpinus) fed on diets supplemented with ethoxyquin, rosemary (Rosmarinus officinalis), or bladder wrack (Fucus vesiculosus). Aquac. Int., 27: 287–301.
  47. Lee J.-W., Choi H., Hwang U.-K., Kang J.-C., Kang Y.J., Kim K.I., Kim J.-H. (2019). Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: a review. Env. Toxicol. Pharmacol., 68: 101–108.
  48. Lešnik S., Furlan V., Bren U. (2021). Rosemary (Rosmarinus officinalis L.): extraction techniques, analytical methods and health-promoting biological effects. Phytochem. Rev., 20: 1273–1328.
  49. Magnadóttir B. (2006). Innate immunity of fish (overview). Fish Shell-fish Immunol., 20: 137–151.
  50. McCord J.M., Fridovich I. (1969). Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem., 244: 6049–6055.
  51. Mena P., Cirlini M., Tassotti M., Herrlinger K.A., Dall’Asta C., Del Rio D. (2016). Phytochemical profiling of flavonoids, phenolic acids, terpenoids, and volatile fraction of a rosemary (Rosmarinus officinalis L.) extract. Molecules, 21: 1576.
  52. Ming J.H., Ye J.Y., Zhang Y.X., Yang X., Shao X.P., Qiang J., Xu P. (2019). Dietary optimal reduced glutathione improves innate immunity, oxidative stress resistance and detoxifiation function of grass carp (Ctenopharyngodon idella) against microcystin-LR. Aquaculture, 498: 594–605.
  53. Mohamed W.A.M., Abd-Elhakim Y.M., Farouk S.M. (2016). Protective effects of ethanolic extract of rosemary against lead-induced hepato-renal damage in rabbits. Exp. Toxicol. Pathol., 68: 451–461.
  54. Mommsen T.P., Vijayan M.M., Moon T.W. (1999). Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev. Fish Biol. Fish., 9: 211–268.
  55. Naiel M.A., Ismael N.E., Negm S.S., Ayyat M.S., Al-Sagheer A.A. (2020). Rosemary leaf powder–supplemented diet enhances performance, antioxidant properties, immune status, and resistance against bacterial diseases in Nile tilapia (Oreochromis niloticus). Aquaculture, 526: 735370.
  56. Naiel M.A., Ismael N.E., Shehata S.A. (2019). Ameliorative effect of diets supplemented with rosemary (Rosmarinus officinalis) on aflatoxin B1 toxicity in terms of the performance, liver histopathology, immunity and antioxidant activity of Nile tilapia (Oreochromis niloticus). Aquaculture, 511: 734264.
  57. Nieto G., Ros G., Castillo J. (2018). Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): a review. Medicines, 5: 98.
  58. NRC (2011). Committee on the Nutrient Requirements of Fish and Shrimp. Nutrient Requirements of Fish and Shrimp. National Research Council. National Academies Press. https://doi.org/10.17226/13039">https://doi.org/10.17226/13039.
  59. Ohkawa H., Ohishi N., Yagi K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 95: 351–358.
  60. Perandones C.E., Illera V.A., Peckham D., Stunz L.L., Ashman R.F. (1993). Regulation of apoptosis in vitro in mature murine spleen T cells. J. Immunol., 151: 3521–3529.
  61. Pokorny J. (1987). Major factors affecting auto-oxidation. In: Autoxidation of unsaturated lipids, Chan H.W. (ed.). Academic Press, pp. 141–207.
  62. Pyszel A., Wrobel T., Szuba A., Andrzejak R. (2005). Effect of metals, benzene, pesticides and ethylene oxide on the haematopoietic system. Med. Pr., 56: 249–255.
  63. Rashed M.N. (2001). Cadmium and lead levels in fish (Tilapia nilotica) tissues as biological indicator for lake water pollution. Environ. Mon. Assess., 68: 75–89.
  64. Reitman S., Frankel S. (1957). A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol., 28: 56–63.
  65. Sadoul B., Geffroy B. (2019). Measuring cortisol, the major stress hormone in fishes. J. Fish Biol., 94: 540–555.
  66. Salamat N., Zarie M. (2012). Using of fish pathological alterations to assess aquatic pollution: a review. WJFMS, 4: 223–231.
  67. Sayed A.H., El-Sayed Y.S., El-Far A.H. (2017). Hepatoprotective efficacy of Spirulina platensis against lead-induced oxidative stress and genotoxicity in catfish; Clarias gariepinus. Ecotoxicol. Environ. Saf., 143: 344–350.
  68. Secombes C.J. (1990). Isolation of salmonid macrophages and analysis of their killing activity. Techniques Fish Immunol., 1: 137–154.
  69. Sherif A.H., Al-Sokary E.T., Rizk W.F., Mahfouz M.E. (2020). Immune status of Oreochromis niloticus subjected to long-term lead nitrate exposure and a Arthrospira platensis treatment trial. Environ. Toxicol. Pharmacol., 76: 103352.
  70. Siwicki A., Anderson D. (1993). Nonspecific defense mechanisms assay in fish: II. Potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs and total immunoglobulin level in serum. In: Fish disease diagnosis, Siwicki A., Anderson D., Waluga J. (eds). Olsztyn, Poland, pp. 105–112.
  71. Trinder P. (1969). Determination of blood glucose using 4-amino phenazone as oxygen acceptor. J. Clin. Pathol., 22: 246.
  72. Van Kampen E.J., Zijlstra W.G. (1961). Recommendations for haemoglobinometry in human blood. Br. J. Haematol., 13: 71.
  73. Yilmaz S., Ergün S., Şanver Çelik E. (2012). Effects of herbal supplements on growth performance of sea bass (Dicentrarchus labrax): change in body composition and some blood parameters. J. BioS-ci. Biotech., 1: 217–222.
  74. Yousefi M., Hoseini S.M., Vatnikov Y.A., Kulikov E.V., Drukovsky S.G. (2019). Rosemary leaf powder improved growth performance, immune and antioxidant parameters, and crowding stress responses in common carp (Cyprinus carpio) fingerlings. Aquaculture, 505: 473–480.
  75. Zhai Q., Wang H., Tian F., Zhao J., Zhang H., Chen W. (2017). Dietary Lactobacillus plantarum supplementation decreases tissue lead accumulation and alleviates lead toxicity in Nile tilapia (Oreochromis niloticus). Aquacult. Res., 48: 5094–5103.
DOI: https://doi.org/10.2478/aoas-2023-0057 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 139 - 149
Submitted on: Jan 5, 2023
Accepted on: Apr 27, 2023
Published on: Jan 23, 2024
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Mohsen Abdel-Tawwab, Heba S. Hamed, Mohamed N. Monier, Rehab M. Amen, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.