Have a personal or library account? Click to login

Effect of Dietary Supplementation with Fish Meal and Soybean Meal on Gastrointestinal Function in Carnivorous Companion Animals – Using Mink (Neovision vision) as a Model

Open Access
|Jan 2024

References

  1. Ahlstrøm Ø., Skrede A. (1998). Comparative nutrient digestibility in dogs, blue foxes, mink and rats. J. Nutr., 128: 2676S–2677S.
  2. Ahlstrøm Ø., Fuglei E., Mydland L. (2003). Comparative nutrient digestibility of arctic foxes (Alopex lagopus) on Svalbald and farm-raised fox (Alopex lagopus). Comp. Biochem. Physiol. A – Mol. Integr. Physiol., 134: 63–68.
  3. Ali W., Ahmad M.M., Iftikhar F., Qureshi M., Ceyhan A. (2020). Nutritive potentials of soybean and its significance for humans health and animal production: a review. Eurasian J. Food Sci. Technol., 4: 41–53.
  4. AOAC (2007). Official Methods of Analysis of AOAC International.18th ed. Washington: Association of Official Analytical Chemists.
  5. Bahl M.I., Hammer A.S., Clausen T., Jakobsen A., Skov S., Andresen L. (2017). The gastrointestinal tract of farmed mink (Neovison vison) maintains a diverse mucosa-associated microbiota following a 3-day fasting period. Microbiologyopen, 6: e00434.
  6. Barczyńska R., Jurgoński A., Śliżewska K., Juśkiewicz J., Kapusniak J. (2019). Corn starch dextrin changes intestinal microbiota and its metabolic activity in rats fed a basal and high-fat diet. Br. Food J., 121: 2219–2232.
  7. Belzile R.J., Poliquin L.S. (1974). Effects of feeding soya flour on the performance of growing-furring mink. Can. J. Anim. Sci., 54: 385–388.
  8. Bjornvad C.R., Elnif J., Sangild P.T. (2004). Short-term fasting induces intra-hepatic lipid accumulation and decreases intestinal mass without reduced brush-border enzyme activity in mink (Mustela vison) small intestine. J. Comp. Physiol. B, 174: 625–632.
  9. Brown R.G. (1989). Protein in dog foods. Can. Vet. J., 30: 528–531.
  10. Capuano E. (2017). The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit. Rev. Food Sci. Nutr., 57: 3543–3564.
  11. Cavanaugh S.M., Cavanaugh R.P., Gilbert G.E., Leavitt E.L., Ketzis J.K., Vieira A.B. (2021). Short-term amino acid, clinicopathologic, and echocardiographic findings in healthy dogs fed a commercial plant-based diet. PLoS One, 16: e0258044.
  12. Dahlman T., Kiiskinen T., Mäkelä J., Niemelä P., Syrjälä-Qvist L., Valaja J., Jalava T. (2002). Digestibility and nitrogen utilisation of diets containing protein at different levels and supplemented with DL-methionine, L-methionine and L-lysine in blue fox (Alopex lagopus). Anim. Feed Sci. Technol., 98: 219–235.
  13. Dashnyam P., Mudududdla R., Hsieh T.-J., Lin T.-C., Lin H.-Y., Chen P.-Y., Hsu C.-Y., Lin C.-H. (2018). β-Glucuronidases of opportunistic bacteria are the major contributors to xenobiotic-induced toxicity in the gut. Sci. Rep., 8: 16372.
  14. Flickinger E.A., Van Loo J., Fahey G.C. (2003). Nutritional responses to the presence of inulin and oligofructose in the diets of domesticated animals: a review. Crit. Rev. Food Sci. Nutr., 43: 19–60.
  15. Gugołek A., Zabłocki W., Kowalska D., Janiszewski P., Konstantynowicz M., Strychalski J. (2010). Nutrients digestibility in Arctic fox (Vulpes lagopus) fed diets containing animal meals. Arq. Bras. Med. Vet. Zoot., 62: 948–953.
  16. Gugołek A., Zalewski D., Strychalski J., Konstantynowicz M. (2013). Food transit time, nutrient digestibility and nitrogen retention in farmed and feral American mink (Neovison vison) – a comparative analysis. J. Anim. Physiol. Anim. Nutr., 97: 1030–1035.
  17. Gugołek A., Juśkiewicz J., Strychalski J., Konstantynowicz M., Zwoliński C. (2015). Nutrient digestibility and colonic fermentation processes in species of the families Mustelidae and Canidae fed the same diet. J. Exp. Zool., 323: 637–644.
  18. Gugołek A., Juśkiewicz J., Strychalski J., Zwoliński C., Żary-Sikorska E., Konstantynowicz M. (2017). The effects of rapeseed meal and legume seeds as substitutes for soybean meal on productivity and gastrointestinal function in rabbits. Arch. Anim. Nutr., 71: 311–326.
  19. Gugołek A., Strychalski J., Juśkiewicz J., Żary-Sikorska E. (2020). The effect of fish and mealworm larvae meals as alternative dietary protein sources on nutrient digestibility and gastrointestinal function in Chinchilla lanigera. Exp. Anim., 69: 70–79.
  20. Jiang Q., Li G., Zhang T., Zhang H., Gao X., Xing X., Yang F. (2018). Application of formulated diets and their effects on nutrient digestibility and reproductive performance of female mink (Neovison vison) during gestation. J. Appl. Anim. Res., 46: 125–129.
  21. Juśkiewicz J., Zduńczyk Z., Bohdziewicz K., Baranowska M. (2012). Physiological effects of the dietary application of quark produced with enzyme transglutaminase as a sole protein source in growing rats. Int. Dairy J., 26: 155–161.
  22. Käkelä R., Pölönen I., Miettinen M., Asikainen J. (2001). Effects of different fat supplements on growth and hepatic lipids and fatty acids in male mink. Acta Agric. Scandinavica, A – Anim. Sci., 51: 217–223.
  23. Knudsen K.E.B. (1997). Carbohydrate and lignin contents of plant materials used in animal feeding. Anim. Feed Sci. Technol., 67: 319–338.
  24. Konieczka P., Smulikowska S. (2018). Viscosity negatively affects the nutritional value of blue lupin seeds for broilers. Animal, 12: 1144–1153.
  25. Krogdahl Å., Ahlstrøm Ø., Burri L., Nordrum S., Dolan L., Bakke A.M., Penn M.H. (2015). Antarctic krill meal as an alternative protein source in pet foods evaluated in adult mink (Neovison vison). I. Digestibility of main nutrients and effect on reproduction. Open Access Anim. Physiol., 7: 29–42.
  26. Lee M.F., Russell R.M., Montgomery R.K., Krasinski S.D. (1997). Total intestinal lactase and sucrase activities are reduced in aged rats. J. Nutr., 127: 1382–1387.
  27. Li P., Wu G. (2023). Amino acid nutrition and metabolism in domestic cats and dogs. J. Anim. Sci. Biotechnol., 14: 1–21.
  28. Ljøkjel K., Harstad O.M., Skrede A. (2000). Effect of heat treatment of soybean meal and fish meal on amino acid digestibility in mink and dairy cows. Anim. Feed Sci. Technol., 84: 83–95.
  29. Ljøkjel K., Sørensen M., Storebakken T., Skrede A. (2004). Digestibility of protein, amino acids and starch in mink (Mustela vison) fed diets processed by different extrusion conditions. Can. J. Anim. Sci., 84: 673–680.
  30. Matusevicius P., Januskievicius A., Gugołek A., Zilinskiene A. (2004). The effect of use of synthetic methionine in fox (Alopex lagopus L.). Vet. Zoot., 25: 71–75.
  31. Messer M., Dahlqvist A. (1966). A one-step ultramicro method for the assay of intestinal disaccharidases. Analit. Biochem., 14: 376–392.
  32. Oba P.M., Utterback P.L., Parsons C.M., Swanson K.S. (2020). True nutrient and amino acid digestibility of dog foods made with human-grade ingredients using the precision-fed cecectomized rooster assay. Translat. Anim. Sci., 4: 442–451.
  33. OJEU (2010). Official Journal of the European Union. Directive 2010/63/EU of the European Parliament and of the Council on the protection of animals used for scientific purposes. (OJEU 20.10.2010, Series L 276, 33–79).
  34. Opstvedt J., Nygard E., Samuelsen T.A., Venturini G., Luzzana U., Mundheim H. (2003). Effect on protein digestibility of different processing conditions in the production of fish meal and fish feed. J. Sci. Food Agric., 83: 775–782.
  35. Review of Operational Procedures for Killing of Fur Animals (2007). Department of Agriculture, Fisheries and Food.
  36. Searcy-Bernal R. (1994). Statistical power and aquacultural research. Aquaculture, 127: 371–388.
  37. Seier L.C., Kirk R.J., Devlin T.J., Parker R.J. (1970). Evaluation of two dry protein sources in rations for growing-furring mink. Can. J. Anim. Sci., 50: 311–318.
  38. Skrede A. (1977). Soybean meal versus fish meal as protein source in mink diets. Acta Agric. Scand., 27: 145–155.
  39. Strychalski J., Juśkiewicz J., Gugołek A., Wyczling P., Daszkiewicz T., Zwoliński C. (2014). Usability of rapeseed cake and wheat-dried distillers’ grains with solubles in the feeding of growing Californian rabbits. Arch. Anim. Nutr., 68: 227–244.
  40. Swanson K.S., Grieshop C.M., Flickinger E.A., Bauer L.L., Wolf B.W., Chow J., Garleb K.A., Williams J.A. (2002). Fructooligosaccharides and Lactobacillus acidophilus modify bowel function and protein catabolites excreted by healthy humans. J. Nutr., 132: S3042–S3050.
  41. Takahashi T., Goto M., Sakata T. (2004). Viscoelastic properties of the small intestinal and caecal contents of the chicken. Brit. J. Nutr., 91: 867–872.
  42. Tester R.F., Karkalas J., Qi X. (2004). Starch structure and digestibility. Enzyme-substrate relationship. World Poult. Sci. J., 60: 186–195.
  43. Tjernsbekk M.T., Tauson A.H., Ahlstrøm Ø. (2014). Ileal, colonic and total tract nutrient digestibility in dogs (Canis familiaris) compared with total tract digestibility in mink (Neovison vison). Arch. Anim. Nutr., 68: 245–261.
  44. Tjernsbekk M.T., Tauson A., Matthiesen C.F., Ahlstrøm Ø. (2016). Protein and amino acid bioavailability of extruded dog food with protein meals of different quality using growing mink (Neovison vison) as a model. J. Anim. Sci., 94: 3796–3804.
  45. Vhile S.G., Skrede A., Ahlstrøm Ø., Hove K. (2005). Comparative apparent total tract digestibility of major nutrients and amino acids in dog (Canis familiaris), blue fox (Alopex lagopus) and mink (Mustela vison). Anim. Sci., 81: 141–148.
  46. Wlazło Ł., Nowakowicz-Dębek B., Czech A., Chmielowiec-Korzeniowska A., Ossowski M., Kułażyński M., Łukaszewicz M., Krasowska A. (2021). Fermented rapeseed meal as a component of the mink diet (Neovison vison) modulating the gastrointestinal tract microbiota. Animals (Basel), 11: 1337.
  47. Yamka R.M., Jamikorn U., True A.D., Harmon D.L. (2003). Evaluation of soyabean meal as a protein source in canine foods. Anim. Feed Sci. Technol., 109: 121–132.
  48. Yang Y., Zhang T., Rong M., Xu J., Xing X. (2021). Energy requirement for growing mink fed on diets of different energy levels. Pakistan J. Zool., 53: 1905–1912.
  49. Zhang H.H., Li G.Y., Ren E.J., Xing X.M., Wu Q., Yang F.H. (2012). Effects of diets with different protein and DL-methionine levels on the growth performance and N-balance of growing minks. J. Anim. Physiol. Anim. Nutr., 96: 436–441.
  50. Zhang T., Sun W., Yang Y., Zhong W., Bao K., Zhang T., Guo X., Li G. (2019). Effects of dietary vitamin E on the growth performance, antioxidative status, and some immunological blood parameters in growing mink (Mustela vison) fed dry feed. Can. J. Anim. Sci., 99: 772–780.
DOI: https://doi.org/10.2478/aoas-2023-0052 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 129 - 137
Submitted on: Jan 5, 2023
Accepted on: Apr 20, 2023
Published on: Jan 23, 2024
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Andrzej Gugołek, Dorota Kowalska, Jerzy Juśkiewicz, Małgorzata Gugołek, Janusz Strychalski, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.