Have a personal or library account? Click to login

A Preliminary Study of the Relationships Between Echotextural Characteristics of the Mammary Gland and Chemical Composition of Milk During Early Lactation in EWES

Open Access
|Nov 2023

References

  1. Ahmadi B., Mirshahi A., Giffin J., Oliveira M.E.F., Gao L., Hahnel A., Bartlewski P.M. (2013). Preliminary assessment of the quantitative relationships between testicular tissue composition and ultra-sonographic image attributes in the ram. Vet. J., 198: 282–285.
  2. Balthazar C.F., Pimentel T.C., Ferrão L.L., Almada C.N., Santillo A., Albenzio M., Mollakhalili N., Mortazavian A.M., Nascimento J.S., Silva M.C., Freitas M.Q., Sant’Ana A.S., Granato D., Cruz A.G. (2017). Sheep milk: physicochemical characteristics and relevance for functional food development. Compr. Rev. Food Sci. Food Saf., 16: 247–262.
  3. Barbagianni M.S., Gouletsou P.G., Valasi I., Petridis I.G., Giannenas I., Fthenakis G.C. (2015). Ultrasonographic findings in the ovine udder during lactogenesis in healthy ewes or ewes with pregnancy toxaemia. J. Dairy Res., 82: 293–303.
  4. Bartlewski P.M., Sohal J., Paravinja V., Baby T., Oliveira M.E.F., Murawski M., Schwarz T., Zięba D.A., Keisler D.H. (2017). Is progesterone the key regulatory factor behind ovulation rate in sheep? Domest. Anim. Endocrinol., 58: 30–38.
  5. Bergman E.N. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev., 70: 567–590.
  6. Bouvier-Muller J., Allain C., Enjalbert F., Tabouret G., Portes D., Caubet C., Tasca C., Foucras G., Rupp R. (2016). Response to dietary-induced energy restriction in dairy sheep divergently selected for resistance or susceptibility to mastitis. J. Dairy Sci., 99: 480–492.
  7. Butler W., Fullenkamp S., Cappiello L., Handwerger S. (1981). The relationship between breed and litter size in sheep and maternal serum concentrations of placental lactogen, estradiol and progesterone. J. Anim. Sci., 53: 1077–1081.
  8. Cannas A., Nudda A., Pulina G. (2002). Nutritional strategies to improve lactation persistency in dairy ewes. Dairy Sheep Symp. Proc. Univ. Sassari, Sardinia, IT.
  9. Chilliard Y., Ferlay A., Mansbridge R.M., Doreau M. (2000). Ruminant milk fat plasticity: nutritional control of saturated, polyun-saturated, trans and conjugated fatty acids. Ann. Zootech., 49: 181–205.
  10. Claeys W.L., Verraes C., Cardoen S., De Block J., Huyghebaert A., Raes K., Dewettinck K., Herman L. (2014). Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control., 42: 188–201.
  11. Claps S., Roberta R., Di Trana A., di Napoli M.A., Giorgio D., Sepe L. (2018). Bioactive compounds in goat milk and cheese: The role of feeding system and breed. Goat Science. InTech open science/open minds in press. London, UK, pp. 233–263.
  12. Conte G., Palombo V., Serra A., Correddu F., D’Andrea M., Macciotta N.P., Mele M. (2022). Study of the fatty acid profile of milk in different sheep breeds: evaluation by multivariate factorial analysis. Animals, 12.
  13. Currò S., Manuelian C.L., De Marchi M., Claps S., Rufrano D., Neglia G. (2019). Effects of breed and stage of lactation on milk fatty acid composition of Italian goat breeds. Animals, 9: 764.
  14. Czarnota G.J., Kolios M.C., Vaziri H., Benchimol S., Ottensmeyer F.P., Sherar M.D., Hunt J.W. (1997). Ultrasonic biomicroscopy of viable, dead and apoptotic cells. Ultrasound Med. Biol., 23: 961–965.
  15. EFSA AHAW Panel (EFSA Panel on Animal Health and Welfare) (2014). Scientific opinion on the welfare risks related to the farming of sheep for wool, meat and milk production. EFSA J., 12: 3933.
  16. Fasulkov I. (2012). Ultrasonography of the mammary gland in ruminants: A review. Bulg. J. Vet. Med., 15: 1–12.
  17. Garaffo M.A., Vassallo-Agius R., Nengas Y., Lembo E., Rando R., Maisano R., Dugo G., Giuffrida D. (2011). Fatty acids profile, atherogenic (IA) and thrombogenic (IT) health lipid indices, of raw roe of blue fin tuna (Thunnus thynnus L.) and their salted product “Bottarga.” Food Nutr. Diet., 2: 736–743.
  18. Gębarowska D., Wierzchoś E., Murawski M., Gregoraszczuk E. (1996). Comparison of ovarian follicles (stage, number and estradiol concentration) in high fecundity Olkuska sheep, low fecundity Polish Mountain sheep and their crossbreeds. Endocr. Regul., 30: 195–200.
  19. Giffin J.L., Franks S.E., Rodriguez-Sosa J.R., Hahnel A., Bartlewski P.M. (2009). A study of morphological and haemodynamic determinants of testicular echotexture characteristics in the ram. Exp. Biol. Med., 234: 794–801.
  20. Guilford J., Fruchter B. (1978). Fundamental statistics in psychology and education. McGraw-Hill, New York, 6th ed.
  21. Hegarty R.S. (2004). Genotype differences and their impact on digestive tract function of ruminants: a review. Aust. J. Exp. Agric., 44: 459–467.
  22. Inácio M.R.C., de Moura M.d.F.V., de Lima K.M.G. (2011). Classification and determination of total protein in milk powder using near infrared reflectance spectrometry and the successive projections algorithm for variable selection. Vib. Spectrosc., 57: 342–345.
  23. Jasińska M., Dmytrów I., Mituniewicz-Małek A., Krystian W. (2010). Cow feeding system versus milk utility. Acta Sci. Pol. Technol. Aliment., 9: 189–199.
  24. Jasti L.S., Dola S.R., Fadnavis N.W., Addepally U., Daniels S., Ponrathnam S. (2014). Co-immobilized glucose oxidase and β-galactosidase on bovine serum albumin coated allyl glycidyl ether (AGE)–ethylene glycol dimethacrylate (EGDM) copolymer as a biosensor for lactose determination in milk. Enzyme Microb. Technol., 64–65: 67–73.
  25. Ledoux M., Chardigny J.M., Darbois M., Soustre Y., Sébédio J.L., Laloux L. (2005). Fatty acid composition of French butters, with special emphasis on conjugated linoleic acid (CLA) isomers. J. Food Compos. Anal., 18: 409–425.
  26. Lérias J.R., Hernández-Castellano L.E., Suárez-Trujillo A., Castro N., Pourlis A., Almeida A.M. (2014). The mammary gland in small ruminants: major morphological and functional events underlying milk production – a review. J. Dairy Res., 81: 304–318.
  27. Lin M., Lewis M.J., Grandison A.S. (2006). Measurement of ionic calcium in milk. Int. J. Dairy Technol., 59: 192–199.
  28. Lipid Anal. Lab. Inc. (n.d.). Fatty Acid Profiling. Last accessed: April 20, 2022. Available from: https://www.lipidanalytical.com/services/fatty-acid-profiling
  29. Lock A.L., Bauman D.E. (2004). Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids., 39: 1197–1206.
  30. Lucas V.S., Burk R.S., Creehan S., Grap M.J. (2014). Utility of high-frequency ultrasound: moving beyond the surface to detect changes in skin integrity. Plast. Surg. Nurs., 34: 34–38.
  31. Makovický P., Nagy M., Makovický P. (2013). Comparison of external udder measurements of the sheep breeds Improved Valachian, Tsigai, Lacaune and their crosses. Chil. J. Agric. Res., 73: 366–371.
  32. Marnet P., Negrão J. (2000). The effect of a mixed-management system on the release of oxytocin, prolactin, and cortisol in ewes during suckling and machine milking. Reprod. Nutr. Dev., 40: 271–281.
  33. Merz A., Stephan R., Johler S. (2016). Staphylococcus aureus isolates from goat and sheep milk seem to be closely related and differ from isolates detected from bovine milk. Front. Microbiol., 7: 319.
  34. Milerski M., Margetín M., Capistrak A., Apolen D., Spanik J., Oravcová M. (2006). Relationships between external and internal udder measurements and the linear scores for udder morphology traits in dairy sheep. Czech J. Anim. Sci., 51: 383.
  35. Milewski S., Ząbek K. (2008). Reproductive, meat and milk performance traits of Charolaise sheep raised in the Warmia and Mazury region (in Polish). Med. Weter., 64: 473–476.
  36. Molik E., Murawski M., Bonczar G., Wierzchoś E. (2008). Effect of genotype on yield and chemical composition of sheep milk. Anim. Sci. Pap. Rep., 26: 211–218.
  37. Mougios V., Matsakas A., Petridou A., Ring-Dimitriou S., Sagredos A., Melissopoulou A., Tsigilis N., Nikolaidis M. (2001). Effect of supplementation with conjugated linoleic acid on human serum lipids and body fat. J. Nutr. Biochem., 12: 585–594.
  38. Murawski M., Schwarz T., Jamieson M., Ahmadi B., Bartlewski P.M. (2019). Echotextural characteristics of the mammary gland during early lactation in two breeds of sheep varying in milk yields. Anim. Reprod., 16: 853–858.
  39. Norms R.R.R. (1993). Nutrient requirements for cattle and sheep in the traditional system. IZ Kraków, Poland.
  40. Oravcová M., Margetín M., Peskovicova D., Daňo J., Hetényi L., Polák P. (2006). Factors affecting milk yield and ewe’s lactation curves estimated with test-day models. Czech J. Anim. Sci., 51: 483–490.
  41. Park Y.W., Juárez M., Ramos M., Haenlein G.F.W. (2007). Physico-chemical characteristics of goat and sheep milk. Small Rumin. Res., 68: 88–113.
  42. Ptasińska-Marcinkiewicz J. (2013). Changes in the content of selected fatty acids of sheep’s milk depending on the month of lactation (in Polish). Zesz. Nauk. UEK., 906: 5–25.
  43. Pulina G., Rassu S.P.G., Cannas A. (1993). L’influenza della tecnica di alimentazione per gruppi sulla produzione lattea negli ovini. Proc. Natl. Congr. S.I.P.A.O.C., Riccione, Italy, pp. 2003–2006.
  44. Revilla I., Escuredo O., González-Martín M.I., Palacios C. (2017). Fatty acids and fat-soluble vitamins in ewe’s milk predicted by near infrared reflectance spectroscopy. Determination of seasonality. Food Chem., 214: 468–477.
  45. Rovai M., Such X., Piedrafita J., Caja G., Pujol M.R. (1999). Evolution of mammary morphology traits during lactation and its relationship with milk yield of Manchega and Lacaune dairy sheep. Publ. Assoc. Anim. Prod., 95: 107–112.
  46. Rovai M., Thomas D., Berger Y., Caja G. (2004). Udder morphology and effects on milk production and ease of milking in dairy sheep. Proc. 10th Great Lakes Dairy Sheep Symposium, Wisconsin, pp. 4–6.
  47. Santos V.J.C., Simplício K.M.d.M.G., Sanchez D.C.C., Coutinho L.N., Teixeira P.P.M., da Câmara Barros F.F.P., de Almeida V.T., Rodrigues L.F.S., Bartlewski P.M., Oliveira M.E.F., Feliciano M.A.R., Vicente W.R.R. (2015). B-mode and Doppler sonography of the mammary glands in dairy goats for mastitis diagnosis. Re-prod. Domest. Anim., 50: 251–255.
  48. Schoknecht P., Nobrega S., Petterson J., Ehrhardt R., Slepetis R., Bell A. (1991). Relations between maternal and fetal plasma concentrations of placental lactogen and placental and fetal weights in well-fed ewes. J. Anim. Sci., 69: 1059–1063.
  49. Schwarz T., Scheeres N., Małopolska M.M., Murawski M., Agustin T.D., Ahmadi B., Strzałkowska N., Rajtar P., Micek P., Bartlewski P.M. (2020). Associations between mammary gland echotexture and milk composition in cows. Animals, 10: 1–11.
  50. Sevostyanova E.A., Krasilshchik E.A. (2020). Comparative analysis of milk and its nutritional value. Eur. J. Nat. Hist., 3: 34–37.
  51. Silva S.R., Afonso J.J., Santos V.A., Monteiro A., Guedes C.M., Azevedo J.M.T., Dias-da-Silva A. (2006). In vivo estimation of sheep carcass composition using real-time ultrasound with two probes of 5 and 7.5 MHz and image analysis1. J. Anim. Sci., 84: 3433–3439.
  52. Snowder G.D., Glimp H.A. (1991). Influence of breed, number of suckling lambs, and stage of lactation on ewe milk production and lamb growth under range conditions. J. Anim. Sci., 69: 923–930.
  53. Sobiech P., Milewski S., Zduńczyk S. (2008). Yield and composition of milk and blood biochemical components of ewes nursing a single lamb or twins. Bull. Vet. Inst. Pulawy., 52: 591–596.
  54. Suárez-Trujillo A., Capote J., Argüello A., Castro N., Morales-DelaNuez A., Torres A., Morales J., Rivero M.A. (2013). Effects of breed and milking frequency on udder histological structures in dairy goats. J. Appl. Anim. Res., 41: 166–172.
  55. Tamime A.Y., Wszolek M., Božanić R., Özer B. (2011). Popular ovine and caprine fermented milks. Small Rumin. Res., 101: 2–16. Ulbricht T.L.V., Southgate D.A.T. (1991). Coronary heart disease: seven dietary factors. Lancet., 338: 985–992.
  56. Wang Y.M., Fan W., Zhang K., Zhang L., Tan Z., Ma R. (2016). Comparison of transducers with different frequencies in breast contrast-enhanced ultrasound (CEUS) using SonoVue as contrast agent. Br. J. Radiol., 89: 20151050.
  57. Williams A.R. (2002). Ultrasound applications in beef cattle carcass research and management. J. Anim. Sci., 80: E183–E188.
  58. Wohlt J.E., Foy W.L., Kniffen D.M., Trout J.R. (1984). Milk yield by Dorset ewes as affected by sibling status, sex and age of lamb, and measurement. J. Dairy Sci., 67: 802–807.
  59. Wu D., Barrett D.M.W., Rawlings N.C., Giffin J.L., Bartlewski P.M. (2009). Relationships of changes in ultrasonographic image attributes to ovulatory and steroidogenic capacity of large antral follicles in sheep. Anim. Reprod. Sci., 116: 73–84.
  60. Xin Q., Ling H.Z., Long T.J., Zhu Y. (2006). The rapid determination of fat and protein content in fresh raw milk using the laser light scattering technology. Opt. Lasers Eng., 44: 858–869.
  61. Yang D., Huynh H.D., Wan Y. (2018). Milk lipid regulation at the maternal-offspring interface. Semin. Cell Dev. Biol., 81: 141–148.
  62. Zamiri M.J., Qotbi A., Izadifard J. (2001). Effect of daily oxytocin injection on milk yield and lactation length in sheep. Small Rumin. Res., 40: 179–185.
  63. Zhang X., Ahmad M.J., An Z., Niu K., Wang W., Nie P., Gao S., Yang L. (2022). Relationship between somatic cell counts and mam-mary gland parenchyma ultrasonography in buffaloes. Front. Vet. Sci., 9: 842105.
  64. Zhu Z., Guo W. (2021). Recent developments on rapid detection of main constituents in milk: a review. Crit. Rev. Food Sci. Nutr., 61: 312–324.
  65. Zięba D.A., Murawski M., Schwarz T., Wierzchoś E. (2002). Pattern of follicular development in high fecundity Olkuska ewes during the estrous cycle. Reprod. Biol., 2: 39–58.
  66. Zlatanos S., Laskaridis K., Feist C., Sagredos A. (2002). CLA content and fatty acid composition of Greek Feta and hard cheeses. Food Chem., 78: 471–477.
DOI: https://doi.org/10.2478/aoas-2023-0038 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1071 - 1083
Submitted on: Dec 6, 2022
Accepted on: May 10, 2023
Published on: Nov 13, 2023
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Edyta Molik, Raha JavadiEsfahani, Maciej Murawski, Tomasz Schwarz, Mark Jamieson, Bahareh Ahmadi, Pawel M. Bartlewski, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.