Have a personal or library account? Click to login

Female Bovine Donor Age Influence on Quality Markers’ Expression and PPARS Abundance in Day 7 Blastocysts

Open Access
|Nov 2023

References

  1. Abbott B.D. (2009). Review of the expression of peroxisome proliferator-activated receptors alpha (PPAR alpha), beta (PPAR beta), and gamma (PPAR gamma) in rodent and human development. Reprod. Toxicol., 27: 246–257.
  2. Arnold D.R., Bordignon V., Lefebvre R., Murphy B.D., Smith L.C. (2006). Somatic cell nuclear transfer alters peri-implantation trophoblast differentiation in bovine embryos. Reproduction., 132: 279–290.
  3. Ax R.L., Armbrust S., Tappan R., Gilbert G., Oyarzo J.N., Bellin M.E., Selner D., McCauley T.C. (2005). Superovulation and embryo recovery from peripubertal Holstein heifers. Anim. Reprod. Sci., 85: 71–80.
  4. Barak Y., Nelson M.C., Ong E.S., Jones Y.Z., Ruiz-Lozano P., Chien K.R., Koden A., Evans R.M. (1999). PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol. Cell., 4: 585e95.
  5. Barak Y., Liao D., He W., Ong E.S., Nelson M.C., Olefsky J.M., Bo-land R., Evans R.M. (2002) Effects of peroxisome proliferator-activated receptor delta on placentation, adiposity, and colorectal cancer. Proc. Natl. Acad. Sci. USA, 99: 303e8.
  6. Baruselli P.S., Batista E.O.S.., Vieira L.M., Ferreira R.M., Guerreiro B.G., Bayeux B.M., Sales J.N.S., Souza A.H., Gimenes L.U. (2016). Factors that interfere with oocyte quality for in vitro production of cattle embryos: effects of different developmental & reproductive stages. Anim. Reprod., 13: 264–272.
  7. Bensinger S.J., Tontonoz P. (2008) Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature, 454: 470e7.
  8. Beyhan Z., Forsberg E.J., Eilertsen K.J., Kent-First M., First N.L. (2007). Gene expression in bovine nuclear transfer embryos in relation to donor cell efficiency in producing live offspring. Mol. Reprod. Dev., 74: 18–27.
  9. Brooks K., Burns G., Spencer T.E. (2014). Conceptus elongation in ruminants: roles of progesterone, prostaglandin, interferon tau and cortisol. J. Anim. Sci. Biotechnol., 5: 1–12.
  10. Cavalieri F.L.B., Morotti F., Seneda M.M., Colombo A.H.B., Andreazzi M.A., Emanuelli I.P., Rigolon L.P. (2018). Improvement of bovine in vitro embryo production by ovarian follicular wave synchronization prior to ovum pick-up. Theriogenology, 117: 57–60.
  11. Chang W.L., Liu Y.W., Dang Y.L., Jiang X.X., Xu H., Huang X., Wang Y.L., Wang H., Zhu C., Xue L.Q., Lin H.Y., Meng W., Wang H. (2018). PLAC8, a new marker for human interstitial extravillous trophoblast cells, promotes their invasion and migration. Development, 145: 148932.
  12. Currin L., Baldassarre H., Bordignon V. (2021). In vitro production of embryos from prepubertal Holstein cattle and Mediterranean water buffalo: problems, progress, and potential. Animals, 11: 2275.
  13. de Silva M.O., Borges M.S., Fernandes L.G., Rodrigues N.N., Watanabe Y.F., Joaquim D.C., Oliveira C.S., da Feuchard V.L.S., Dos Cyrillo J.N.S.G., Mercadante M.E.Z., Monteiro F.M. (2022). Effect of Nellore (Bos indicus) donor age on in-vitro embryo production and pregnancy rate. Reprod. Domest. Anim., 57: 980–988.
  14. Dorniak P., Bazer F.W., Spencer T.E. (2011). Prostaglandins regulate conceptus elongation and mediate effects of interferon tau on the ovine uterine endometrium. Biol. Reprod., 84: 1119–1127.
  15. El-Sayed A., Hoelker M., Rings F., Salilew D., Jennen D., Tholen E., Sirard M.A., Schellander K., Tesfaye D. (2006). Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients. Physiol. Genomics., 28: 84–96.
  16. Ferré L.B., Kjelland M.E., Strøbech L.B., Hyttel P., Mermillod P., Ross P.J. (2020) Review: Recent advances in bovine in vitro embryo production: reproductive biotechnology history and methods. Animal, 4: 991–1004.
  17. Forde N., Lonergan P. (2017). Interferon-tau and fertility in ruminants. Reproduction, 154: F33–F43.
  18. Galli C., Duchi R., Colleoni S., Lagutina I., Lazzari G. (2014). Ovum pick up, intracytoplasmic sperm injection and somatic cell nuclear transfer in cattle, buffalo, and horses: from the research laboratory to clinical practice. Theriogenology, 81: 138–151.
  19. Guo J., Lu W.F., Liang S., Choi J.W., Kim N.H., Cui X.S. (2017). Peroxisome proliferator-activated receptor δ improves porcine blastocyst hatching via the regulation of fatty acid oxidation. Theriogenology, 90: 266–275.
  20. Gutiérrez-Añez J.C., Lucas-Hahn A., Hadeler K.G., Aldag P., Nie-mann H. (2021). Melatonin enhances in vitro developmental competence of cumulus-oocyte complexes collected by ovum pick-up in prepubertal and adult dairy cattle. Theriogenology, 161: 285–293.
  21. Hansen T.R., Sinedino L.D.P., Spencer T.E. (2017). Paracrine and endocrine actions of interferon tau (IFNT). Reproduction, 154: F45–F59.
  22. Huang J.C. (2008). The role of peroxisome proliferator-activated receptors in the development and physiology of gametes and preim-plantation embryos. PPAR Res., 2008: 732303.
  23. Huang M.L., Qi C.L., Zou Y., Yang R., Jiang Y., Sheng J.F., Kong Y.G., Tao Z.Z., Chen S.M. (2020). Plac8-mediated autophagy regulates nasopharyngeal carcinoma cell function via AKT/mTOR pathway. J. Cell. Mol. Med., 24: 7778–7788.
  24. Idrees M., Xu L., El Sheikh M., Sidrat T., Song S.-H., Joo M.-D., Lee K.-L., Kong I.-K. (2019). The PPARδ agonist GW501516 improves lipolytic/lipogenic balance through CPT1 and PEPCK during the development of pre-implantation bovine embryos. Int. J. Mol. Sci., 20: 6066.
  25. Jawerbaum A., Capobianco E. (2011). Review: Effects of PPAR activation in the placenta and the fetus: implications in maternal diabetes. Placenta, 32: S212–S217.
  26. Jia Y., Ying X., Zhou J., Chen Y., Luo X., Xie S., Wang Q., Hu W., Wang L. (2018). The novel KLF4/PLAC8 signaling pathway regulates lung cancer growth. Cell Death Dis., 9: 603.
  27. Jiang J., Ma L., Prakapenka D., VanRaden P.M., Cole J.B., Da Y. (2019). A large-scale genome-wide association study in U.S. Holstein cattle. Front. Genet., 10: 412.
  28. Kasimanickam R.K., Kasimanickam V.R. (2020). IFNT, ISGs, PPARs, RXRs and MUC1 in day 16 embryo and endometrium of repeat-breeder cows, with or without subclinical endometritis. Theriogenology, 158: 39–49.
  29. Kawamoto T.S., Viana J.H.M., Pontelo T.P., Franco M.M., De Faria O.A.C., Fidelis A.A.G., Vargas L.N., Figueiredo R.A. (2022) Dynamics of the reproductive changes and acquisition of oocyte competence in Nelore (Bos taurus indicus) calves during the early and intermediate prepubertal periods. Animals, 12: 2137–2022.
  30. Keramari M., Razavi J., Ingman K.A., Patsch C., Edenhofer F., Ward C.M., Kimber S.J. (2010). Sox2 is essential for formation of trophectoderm in the preimplantation embryo. PLoS One, 5(11): e13952.
  31. Khatir H., Lonergan P., Carolan C., Mermillod P. (1996). Prepubertal bovine oocyte: a negative model for studying oocyte developmental competence. Mol. Reprod. Dev., 45: 231–239.
  32. Khatir H., Lonergan P., Touze J.L., Mermillod P. (1998). The characterization of bovine embryos obtained from prepubertal calf oocytes and their viability after non surgical embryo transfer. Theriogenology, 50: 1201e10.
  33. Kowalczyk-Zieba I., Boruszewska D., Suwik K., Staszkiewicz-Chodor J., Jaworska J., Woclawek-Potocka I. (2020). Iloprost affects in vitro maturation and developmental competence of bovine oocytes. Theriogenology, 157: 286–296.
  34. Ludwig T., Eggenschwiler J., Fisher P., D’Ercole A.J., Davenport M.L., Efstratiadis A. (1996). Mouse mutants lacking the type 2 IGF receptor (IGF2R) are rescued from perinatal lethality in Igf2 and Igf1r null backgrounds. Dev. Biol., 177: 517–535.
  35. Majerus V., De Roover R., Etienne D., Kaidi S., Massip A., Dessy F., Donnay I. (1999). Embryo production by ovum pick up in un-stimulated calves before and after puberty. Theriogenology, 52: 1169–1179.
  36. Mao M., Cheng Y., Yang J., Chen Y., Xu L., Zhang X., Li Z., Chen C., Ju S., Zhou J., Wang L. (2021). Multifaced roles of PLAC8 in cancer. Biomark. Res., 9: 1–10.
  37. McNeel A.K., Reiter B.C., Weigel D., Osterstock J., Di Croce F.A. (2017) Validation of genomic predictions for wellness traits in US Holstein cows. J. Dairy Sci., 100: 9115–9124.
  38. Morin-Doré L., Blondin P., Vigneault C., Grand F.X., Labrecque R., Sirard M.A. (2017). Transcriptomic evaluation of bovine blasto-cysts obtained from peri-pubertal oocyte donors. Theriogenology, 93: 111–123.
  39. Mourtada-Maarabouni M., Watson D., Munir M., Farzaneh F., Williams G.T. (2013). Apoptosis suppression by candidate oncogene PLAC8 is reversed in other cell types. Curr. Cancer. Drug. Targets., 13: 80–91.
  40. Oropeza A., Wrenzycki C., Herrmann D., Hadeler K.G., Niemann H. (2004). Improvement of the developmental capacity of oocytes from prepubertal cattle by intraovarian insulin-like growth factor-I application. Biol. Reprod., 70: 1634–1643.
  41. Orozco-Lucero E., Sirard M.A. (2014). Molecular markers of fertility in cattle oocytes and embryos: progress and challenges. Anim. Reprod., 11: 183–194.
  42. Palma G.A., Tortonese D.J., Sinowatz F. (2001). Developmental capacity in vitro of prepubertal oocytes. Anat. Histol. Embryol., 30: 295e300.
  43. Patra S.K. (2020). Roles of OCT4 in pathways of embryonic development and cancer progression. Mech. Ageing. Dev., 189: 111286.
  44. Rizos D., Ward F., Duffy P., Boland M.P., Lonergan P. (2002). Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol. Reprod. Dev., 61: 234–248.
  45. Rizzino A., Wuebben E.L. (2016). Sox2/Oct4: A delicately balanced partnership in pluripotent stem cells and embryogenesis. Biochim. Biophys. Acta Gene Regul. Mech., 1859: 780–791.
  46. Rocha C.C., da Silveira J.C., Forde N., Binelli M., Pugliesi G. (2021). Conceptus-modulated innate immune function during early pregnancy in ruminants: a review. Anim. Reprod., 18: e20200048.
  47. Shi L., Xiao L., Heng B., Mo S., Chen W., Su Z. (2017). Overexpression of placenta specific 8 is associated with malignant progression and poor prognosis of clear cell renal cell carcinoma. Int. Urol. Nephrol., 49: 1165–1176.
  48. Sidrat T., Khan A.A., Idrees M., Joo M.D., Xu L., Lee K.L., Kong I.K. (2020). Role of Wnt signaling during in-vitro bovine blastocyst development and maturation in synergism with PPARδ signaling. Cells, 9: 923.
  49. Sidrat T., Rehman Z.U., Joo M.D., Lee K.L., Kong I.K. (2021). Wnt/β-catenin pathway-mediated PPARδ expression during embryonic development differentiation and disease. Int. J. Mol. Sci., 22: 1854.
  50. Spanos S., Becker D.L., Winston R.M., Hardy K. (2000). Anti-apoptotic action of insulin-like growth factor-I during human preim-plantation embryo development. Biol. Reprod., 63: 1413–1420.
  51. Sun Y., Lai X., Yu Y., Li J., Cao L., Lin W., Huang C., Liao J., Chen W., Li C., Yang C., Ying M., Chen Q., Ye Y. (2019). Inhibitor of DNA binding 1 (Id1) mediates stemness of colorectal cancer cells through the Id1-c-Myc-PLAC8 axis via the Wnt/β-catenin and Shh signaling pathways. Cancer Manag. Res., 11: 6855–6869.
  52. Velásquez A.E., Veraguas D., Cabezas J., Manríquez J., Castro F.O., Rodríguez-Alvarez L.L. (2019). The expression level of SOX2 at the blastocyst stage regulates the developmental capacity of bovine embryos up to day-13 of in vitro culture. Zygote, 27: 398–404.
  53. Wang L.M., Feng H.L., Ma Y.Zh., Cang M., Li H.J., Yan Zh., Zhou P., Wen J.X., Bou S., Liu D.J. (2009). Expression of IGF receptors and its ligands in bovine oocytes and preimplantation embryos. Anim. Reprod. Sci., 114: 99–108.
  54. Wang X.L., Wang K., Han G.C., Zeng S.M. (2013) A potential autocrine role for interferon tau in ovine trophectoderm. Reprod. Domest. Anim., 48: 819–825.
  55. Wu S.F., Huang Y., Hou J.K., Yuan T.T., Zhou C.X., Zhang J., Chen G.Q. (2010). The downregulation of onzin expression by PKCepsilon-ERK2 signaling and its potential role in AML cell differentiation. Leukemia, 24: 544–551.
  56. Yao N., Wan P.C., Hao Z.D., Gao F.F., Yang L., Cui M.S., Wu Y., Liu J.H., Liu S., Chen H., Zeng S.M. (2009). Expression of interferontau mRNA in bovine embryos derived from different procedures. Reprod. Domest. Anim., 44: 132–139.
  57. Yu J.S., Cui W. (2016). Proliferation, survival, and metabolism: the role of PI3K/AKT/mTOR signaling in pluripotency and cell fate determination. Development, 143: 3050–3060.
  58. Zaraza J., Oropeza A., Velazquez M.A., Korsawe K., Herrmann D., Carnwath J.W., Niemann H. (2010). Developmental competence and mRNA expression of preimplantation in vitro-produced embryos from prepubertal and postpubertal cattle and their relationship with apoptosis after intraovarian administration of IGF-1. Theriogenology, 74: 75–89.
DOI: https://doi.org/10.2478/aoas-2023-0029 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1061 - 1069
Submitted on: Aug 11, 2022
Accepted on: Mar 3, 2023
Published on: Nov 13, 2023
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Joanna Jaworska, Arkadiusz Nowicki, Ilona Kowalczyk-Zięba, Dorota Boruszewska, Alicja Siergiej, Milena Traut, Krzysztof Łukaszuk, Izabela Wocławek-Potocka, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.