Have a personal or library account? Click to login

Sustainable Intensification – Reaching Towards Climate Resilience Livestock Production System – A Review

Open Access
|Nov 2023

References

  1. Alalade O.A., Iyayi E.A. (2006). Chemical composition and feeding value of Azolla (Azolla pinnata) meal for egg-type chicks. Int. J. Poultry Sci., 52: 137–141.
  2. Albrecht A., Kandji S.T. (2003). Carbon sequestration in tropical agroforestry systems. Agric. Ecosyst. Environ., 99: 15–27.
  3. Barrett C.B., Carter M.R., McPeak J., Mude A. (2008). Altering poverty dynamics with index insurance: Northern Kenya’s. Madison, USA, University of Wisconsin.
  4. Battini F., Agostini A., Boulamanti A.K., Giuntoli J., Amaducci S. (2014). Mitigating the environmental impacts of milk production via anaerobic digestion of manure: a case study of a dairy farm in the Po Valley. Sci. Total Environ., 481: 196–208.
  5. Beroya-Eitner M.A. (2015). Ecological vulnerability indicators. Ecol. Indic., 60: 329–334.
  6. Cassman K.G. (1999). Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci., 96: 5952–5959.
  7. Conant R.T., Paustian K. (2002). Soil carbon sequestration in over-grazed grassland ecosystems. Global Biogeochemical Cycles., 16: 1143.
  8. Conway G. (2012). One billion hungry: Can we feed the world? Ithaca: Cornell University Press.
  9. C2ES (2019). What is climate resilience and why does it matter?. Climate Essentials, 4: 1–12.
  10. DFID (2013). Sustainable development: A review of monitoring initiatives in agriculture.
  11. Eagle A.J., Olander L.P., Henry L.R., Haugen-Kozyra K., Millar N., Robertson G.P. (2012). Greenhouse gas mitigation potential of agricultural land management in the United States: a synthesis of literature. Report N.I. R 10-04. 3rd ed. Durham, USA, Nicholas Institute for Environmental Policy Solutions, Duke University.
  12. Fan S. (2020). Sustainable intensification of agriculture is key to feeding Africa in the 21st century. Front. Agr. Sci. Eng., 7: 366‒370.
  13. FAO (2012). Livestock sector development for poverty reduction: an economic and policy perspective – Livestock’s many virtues, by J. Otte, A. Costales, J. Dijkman, U. Pica-Ciamarra, T. Robinson, V. Ahuja, C. Ly and D. Roland-Holst. Rome, pp. 161.
  14. FAO (2013). Climate-Smart Agriculture – Sourcebook, The U.N. Food and Agriculture Organisation FAO: Rome, Italy, p. 557. Available online: http://www.fao.org/3/a-i3325e.pdf accessed on 21 December 2020.
  15. FAO (2017). http://www.fao.org/climate-smart-agriculture-source-book/production-resources/module-b2-livestock/chapter-b2-3/en/
  16. FAO (2009). State of food and agriculture – livestock in the balance. Rome.
  17. FAO (2012). The state of food insecurity in the world, Save and grow. A policymaker’s guide to the sustainable intensification of small-holder crop production. FAO, Rome, pp. 102–140. http://www.fao.org/ag/save-and-grow/
  18. FAOSTAT (2013).
  19. Gerber P., Vellinga T., Opio C., Steinfeld H. (2011). Productivity gains and greenhouse gas intensity in dairy systems. Livest. Sci., 139: 100–108.
  20. Gerber P.J.H., Steinfeld B., Henderson A., Mottet C., Opio J., Dijkman A., Falcucci G.T. (2013). Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Rome: FAO. Available from http://www.fao.org/3/a-i3437e.pdf.
  21. Gill M.P., Smith P., Wilkinson J.M. (2009). Mitigating climate change: the role of domestic livestock. Animal, 43: 321–322.
  22. Goulding K., Trewavas A., Giller K. (2011). Feeding the world: a contribution to the debate. World Agricult., 2: 32–38.
  23. Hellmuth M.E., Moorhead A., Thomson. M., Williams J. (2007). Climate risk management in Africa: learning from practice. Climate and Society. No. 1. Palisades, NY, the International Research Institute for Climate and Society IRI. http://www.livestockglobalalliance.org/. The livestock sector is vital to global food security and health. accessed 13 January 2021.
  24. Herrero M., Thornton P.K. (2013). Livestock and global change: Emerging issues for sustainable food systems. Proc. Nat. Acad. Sci., 110: 20878–20881.
  25. Hoffman M.T., Vogel C. (2008). Climate change impacts on African rangelands. Rangelands, 30: 12–17.
  26. Hurst P., Termine P., Karl M. (2005). Agricultural workers and their contribution to sustainable agriculture and rural development. Rome, FAO.
  27. IPCC (2013). Summary for policymakers. In: Climate change: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Stocker T.F., Qin D., Plattner G.K., Tignor M.M.B., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M. (eds). Cambridge University Press, p. 154.
  28. Ivan D.T., Thuget T.Q. (1995). Use of Azolla in rice production in Vietnam. In: Nitrogen and Rice. International Rice Research Institute, Philippines, 395.
  29. Jabareen Y. (2013). Planning the resilient city: Concepts and strategies for coping with climate change and environmental risk. Cities, 31: 220–229.
  30. Kissinger M., Rees W.E. (2010). An interregional ecological approach for modelling sustainability in a globalizing world – reviewing existing approaches and emerging directions. Ecol. Modelling, 22121: 2615–2623.
  31. Kumar S., Lakhran H., Meena R.S., Jangir K.C. (2017). Current needs of sustainable food and forage production to eliminate food and forage insecurity under climate change era. Forage Res., 43: 165–173.
  32. Kuyper T.W., Struik P.C. (2014). Global food security, rhetoric, and the sustainable intensification debate. Curr. Opin. Env. Sust., 8: 71–79.
  33. Maia A.G., Miyamoto B.C.B., Garcia J.R. (2018). Climate change and agriculture: Do environmental preservation and ecosystem services matter? Ecol. Econ., 152: 27–39.
  34. Moher D., Liberati A., Tetzla J., Altman D.G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med., 151: 264–269.
  35. Montes F., Meinen R., Dell C., Rotz A., Hristov A.N., Oh J., Wag-horn G., Gerber P.J., Henderson B., Makkar H.P. (2013). Special topics – mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options. J. Anim. Sci., 91: 5070–5094.
  36. Mude A. (2009). Index-based livestock insurance for northern Kenya’s arid and semi-arid lands: the Marsabit pilot. Project document. ILRI, Nairobi, Kenya. pp. 14.
  37. Popp A., Lotze-Campen H., Bodirsky B. (2010). Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Global Environ. Change, 20: 451–462.
  38. Pretty J., Toulmin C., Williams S., (2011). Sustainable intensification in African agriculture. Int. J. Agricult. Sust., 9: 5–24.
  39. Rockström J., Steffen W., Noone K., Persson A., Chapin F.S., Lambin E., Lenton T.M., Scheffer M., Folke C., Schellnhuber H., Nykvist B., De Wit A., Hughes T., Van der Leeuw S., Rodhe H., Sörlin S., Snyder P. K., Costanza R., Svedin U., Falkenmark M., Karlberg L., Corell R.W., Fabry V.J., Hansen J., Walker B., Liverman D., Richardson K., Crutzen P., Foley J. (2009). Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc., 142: 32–39.
  40. Rolfe J. (2010). Economics of reducing grazing emissions from beef cattle in extensive grazing systems in Queensland. Rangeland J., 32: 197–204.
  41. Sahu G., Rout P.P., Mohapatra S., Das S.P., Pradhan P.P. (2020). Climate smart agriculture: a new approach for sustainable intensification. Curr. J. Appl. Sci. Technol., 39: 138–147.
  42. Seré C., Steinfeld H. (1996). World livestock production systems: current status, issues and trends. FAO Animal Production and Health Paper, Rome, 127.
  43. Smith P., Martino D., Cai Z., Gwary D., Janzen H., Kumar P., Mc-Carl B., Ogle S., O’Mara F., Rice C., Scholes B., Sirotenko O., Howden M., McAllister T., Pan G., Romanenkov V., Schneider U., Towprayoon S., Wattenbach M., Smith J. (2008). Greenhouse gas mitigation in agriculture. Philosoph. Transact. Royal Soc., 363: 789–813.
  44. Steffen W., Richardson K., Rockström J., Cornell S. E., Fetzer I., Bennett E. M., Biggs R., Carpenter S. R., DeVries W., DeWit C. A., Folke C., Gerten D., Heinke J., Mace G. M., Persson L. M., Ramanathan V., Reyers B., Sörlin S. (2015). Planetary boundaries: guiding human development on a changing planet. Science, 347.
  45. The Montpellier Panel (2013). Sustainable Intensification: A New Paradigm for African Agriculture, London.
  46. Thornton P.K., Herrero M. (2010). The potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. PNAS, 107: 19667–19672.
  47. UNFCCC (2011). Reducing vulnerability to climate change, climate variability and extremes, land degradation and loss of biodiversity: environmental and developmental challenges and opportunities, United Nations Framework Convention on Climate Change UNFCCC: Rio de Janeiro, Brazil, New York, NY, USA, pp. 47.
  48. USDA United States Department of Agriculture (2013). Climate Change and Agriculture in the United States: Effects and Adaptation. USDA technical bulletin, Washington, DC.
  49. Wall E., Smit B. (2005). Climate change adaptation in light of sustainable agriculture. J. Sustain. Agric., 27: 113–123.
  50. Wall R., Morgan E. (2009). Veterinary parasitology and climate change. Vet. Parasitol., 163: 263.
  51. Williams A., Speller D. (2016). Reducing the environmental impact of poultry production. In: Sustainable poultry production in Europe, Burton E., Gatcliffe J., O’Neill H.M., Scholey D. (eds). Oxford-shire UK, CABI.
  52. Williams A.J., Chatterton G., Hateley A., Curwen J.E. (2015). A systems-life cycle assessment approach to modelling the impact of improvements in cattle health on greenhouse gas emissions. Adv. Anim. Biosci., 6: 29–31.
  53. Yadav J., Mandal M.K., Singh R., Baghel R.P.S. (2017). Performance analysis of Narmada Nidhi poultry under backyard farming system in Mandla District of Madhya Pradesh. Indian J. Vet. Sci. Biotechnol, 13: 22–24.
DOI: https://doi.org/10.2478/aoas-2023-0027 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1037 - 1047
Submitted on: Sep 23, 2022
Accepted on: Feb 15, 2023
Published on: Nov 13, 2023
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Ruchi Singh, Sanjit Maiti, Sanchita Garai, Rachna,, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.