Have a personal or library account? Click to login
Rumen protozoa population and carbohydrate-digesting enzymes in sheep fed a diet supplemented with hydrolysable tannins Cover

Rumen protozoa population and carbohydrate-digesting enzymes in sheep fed a diet supplemented with hydrolysable tannins

Open Access
|May 2023

References

  1. Abarghuei M.J., Rouzbehan Y., Alipour D. (2011). Effect of oak (Quercus libani Oliv.) leave tannin on ruminal fermentation of sheep. J. Agric. Sci. Technol., 13: 1021–1032.
  2. Aboagye I.A., Oba M., Castillo A.R., Koenig K.M., Iwaasa A.D., Beauchemin K.A. (2018). Effects of hydrolysable tannin with or without condensed tannin on methane emissions, nitrogen use, and performance of beef cattle fed a high-forage diet. J. Anim. Sci. 96: 5276–5286.
  3. Adamczyk B., Simon J., Kitunen V., Adamczyk S., Smolander A. (2017 a). Tannins and their complex interaction with different organic nitrogen compounds and enzymes: old paradigms versus recent advances. Chemistry Open, 6: 610–614.
  4. Adamczyk B., Karonen M., Adamczyk S., Engstrӧm M.T., Laakso T., Saranpӓӓ P., Kitunen V., Smolander A., Simon J. (2017 b). Tannins can slow-down but also speed-up soil enzymatic activity in boreal forest. Soil Biol. Biochem., 107: 60–67.
  5. Aghamohamadi N., Hozhabri F., Alipour D. (2014). Effect of oak acorn (Quercus perlica) on ruminal fermentation of sheep. Small Rumin. Res., 120: 42–50.
  6. Amoako D., Awika J.M. (2016). Polyphenol interaction with food carbohydrates and consequences on availability of dietary glucose. Curr. Opin. Food Sci., 8: 14–18.
  7. AOAC (2011). Association of Official Analytical Chemists, Official Methods of Analysis.18th ed. Arlington, VA.
  8. Barbehenn R.V., Constabel C.P. (2011). Tannins in plant-herbivore interactions. Phytochemistry, 72: 1551–1565.
  9. Barrett A.H., Farhadi N.F., Smith T.J. (2018). Slowing starch digestion and inhibiting digestive enzyme activity using plant flavanols/tannins – A review of efficacy and mechanisms. LWT, 87: 394–399.
  10. Björck I.M., Nyman M.E. (1987). In vitro effects of phytic acid and polyphenols on starch digestion and fiber degradation. J. Food Sci., 52: 1588–1594.
  11. Carulla J.E., Kreuzer M., Machmüller A., Hess H.D. (2005). Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen forage-fed sheep. Aust. J. Agric. Res., 56: 961–970.
  12. Chiquette J., Cheng K.J., Rode L.M., Milligan L.P. (1989). Effect of tannin content in two isosynthetic strains of birdsfoot trefoil (Lotus corniculatus L.) on feed digestibility and rumen fluid composition in sheep. Can. J. Anim. Sci., 69: 1031–1039.
  13. Cieślak A., Zmora P., Pers-Kamczyc E., Stochmal A., Sadowinska A., Salem A.Z.M., Kowalczyk D., Zbonik P., Szumacher-Strabel M. (2014). Effects of two sources of tannins (Quercus L. and Vaccinium vitis idaea L.) on rumen microbial fermentation: an in vitro study. Ital. J. Anim. Sci., 13: 3133.
  14. Cipriano-Salazar M., Rojas-Hernández S., Olivares-Pérez J., Jiménez-Guillén R., Cruz-Lagunas B., Camacho-Díaz L.M., Ugbogu A.E. (2018). Antibacterial activities of tannic acid against isolated ruminal bacteria from sheep. Microb., 117: 255–258.
  15. Colombini S., Graziosi A.R., Parma P., Iriti M., Vitalini S., Sarnataro C., Spanghero M. (2021). Evaluation of dietary addition of 2 essential oils from Achillea moschata, or their compounds (bornyl acetate, camphor, and eucalyptol) on in vitro ruminal fermentation and microbial community composition. Anim. Nutr., 7: 224–231.
  16. Daglia M. (2012). Polyphenols as antimicrobial agents. Curr. Opin. Biotech., 23: 174–181.
  17. Dehority B.A. (1993). Laboratory Manual for Classification and Morphology of Rumen Ciliate Protozoa. CRC Press Inc., London.
  18. Doce R.R., Hervás G., Belenguer A., Toral P.G., Giráldez F.J., Frutos P. (2009). Effect of the administration of young oak (Quercus pyrenaica) leaves to cattle on ruminal fermentation. Anim. Feed Sci. Technol., 150: 75–85.
  19. Frutos P., Hervás G., Giráldez F.J., Mantecón A.R. (2004). Review. Tannins and ruminant nutrition. Span. J. Agric. Res., 2: 191–202.
  20. Gäbel G., Sehested J. (1997). SCFA transport in the forestomach of ruminants. Comp. Biochem. Physiol., 118A: 367–374.
  21. Gherman C., Culea M., Cozar O. (2000). Comparative analysis of some active principles of herb plants by GC/MS. Talanta, 53: 253–262.
  22. Gonҫalves R., Mateus N., Freitas V. (2011). Inhibition of α-amylase activity by condensed tannins. Food Chem., 125: 665–672.
  23. Haro A.N., Carro M.D., de Evan T., González J. (2018). Protecting protein against ruminal degradation could contribute to reduced methane production. J. Anim. Physiol. Anim. Nutr. (Berl.), 102: 1482–1487.
  24. He Q., Lv Y., Yao K. (2006). Effects of tea polyphenols on the activities of α-amylase, pepsin, trypsin and lipase. Food Chem., 101: 1178–1182.
  25. Hess H.D., Tiemann T.T., Noto F., Carulla J.E., Kreuzer M. (2006). Strategic use of tannins as means to limit methane emission from ruminant livestock. Int. Congr. Ser., 1293: 164–167.
  26. Hoste H., Torres-Acosta J.F.J., Sandoval-Castro C.A., Mueller-Harvey I., Sotiraki S., Louvandini H., Thamsborg S.M., Terrill T.H. (2015). Tannin containing legumes as a model for nutraceuticals against digestive parasites in livestock. Vet. Parasitol., 212: 5–17.
  27. Huyen N.T., Fryganas C., Uittenbogaard G., Mueller-Harvey I., Verstegen M.W.A., Hendriks W.H., Pellikaan W.F. (2016). Structural features of condensed tannins affect in vitro ruminal methane production and fermentation characteristics. J. Agric. Sci., 154: 1474–1487.
  28. IZ PIB-INRA (2009). Ruminant Nutrition. Recommended Allowances and Feed Tables (in Polish). Jarrige E. (ed.), National Research Institute of Animal Production, Balice, Poland.
  29. Jayanegara A., Leiber F., Kreuzer M. (2012). Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J. Anim. Physiol. Anim. Nutr., 96: 365–375.
  30. Jayanegara A., Goel G., Makkar H.P.S., Becker K. (2015). Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Tech., 209: 60–68.
  31. Lavrenčič A., Pirman T. (2021). In vitro gas and short-chain fatty acid production from soybean meal treated with chestnut and quebracho wood extracts by using sheep rumen fluid. J. Anim. Feed Sci., 30: 312–319.
  32. Majewska M.P., Pająk J.J., Skomiał J., Miltko R., Kowalik B. (2017). The effect of lingonberry leaves and oak cortex addition to sheep diets on pancreatic enzymes activity. J. Animal Feed Sci., 26: 354–358.
  33. Majewska M.P., Miltko R., Bełżecki G., Kędzierska A., Kowalik B. (2021). Protozoa population and carbohydrate fermentation in sheep fed diet with different plant additives. Anim. Biosci., 34: 1146–1156.
  34. Majewska M.P., Miltko R., Bełżecki G., Kędzierska A., Kowalik B. (2022). Comparison of the effect of synthetic (tannic acid) or natural (oak bark extract) hydrolysable tannins addition on fatty acid profile in the rumen of sheep. Animals, 12: 699.
  35. McSweeney C.S., Palmer B., McNeill D.M., Krause D.O. (2001). Microbial interactions with tannins: nutritional consequences for ruminants. Anim. Feed Sci. Tech., 91: 83–93.
  36. Mergeduš A., Pšenková M., Brus M., Janžekovič M. (2018). Tannins and their effect on production efficiency of ruminants. Agricultura, 15: 1–11.
  37. Michałowski T. (1987). The volatile fatty acids production by ciliate protozoa in the rumen of sheep. Acta Protozool., 26: 335–345.
  38. Miltko R., Pietrzak M., Bełżecki G., Wereszka K., Michałowski T., Hackstein J.H.P. (2015). Isolation and in vitro cultivation of the fibrolytic rumen ciliate Eremoplastron (Eudiplodinium) dilobum. Eur. J. Protistol., 51: 109–117.
  39. Miltko R., Bełżecki G., Kowalik B., Skomiał J. (2016 a). Presence of carbohydrate-digesting enzymes throughout the digestive tract of sheep. Turk. J. Vet. Anim. Sci., 40: 271–277.
  40. Miltko R., Rozbicka-Wieczorek J.A., Więsyk E., Czauderna M. (2016 b). The influence of different chemical forms of selenium added to the diet including carnosic acid, fish oil and rapeseed oil on the formation of volatile fatty acids and methane in the rumen, and fatty acid profiles in the rumen content and muscles of lambs. Acta Vet., 66: 373–391.
  41. Miltko R., Majewska M.P., Bełżecki G., Kula K., Kowalik B. (2019). Growth performance, carcass and meat quality of lambs supplemented different vegetable oils. Asian-Australas. J. Anim. Sci., 32: 767–775.
  42. Min B.R., Attwood G.T., McNabb W.C., Molan A.L., Barry T.N. (2005). The effect of condensed tannins from Lotus corniculatus on the proteolytic activities and growth of rumen bacteria. Anim. Feed Sci. Technol., 121: 45–58.
  43. Mueller-Harvey I. (2001). Analysis of hydrolysable tannins. Anim. Feed Sci. Tech., 91: 3–20.
  44. Mueller-Harvey I. (2006). Unravelling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric., 86: 2010–2037.
  45. Newbold C.J., de la Fuente G., Belanche A., Ramos-Morales E., McEwan N.R. (2015). The role of ciliate protozoa in the rumen. Front Microbiol., 6: 1313.
  46. Ozkose E., Kuloǧlu R., Comlekcioglu U., Kar B., Akyol I., Ekinci M.S. (2011). Effects of tannic acid on the fibrolytic enzyme activity and survival of some ruminal bacteria. Int. J. Agric. Biol., 13: 386–390.
  47. Patra A.K., Saxena J. (2011). Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric., 91: 24–37.
  48. Rojas-Román L.A., Castro-Pérez B.I., Estrada-Angulo A., Angulo-Montoya C., Yocupicio-Rocha J.A., López-Soto M.A., Barreras A., Zinn R.A., Plascencia A. (2017). Influence of long-term supplementation of tannins on growth performance, dietary net energy and carcass characteristics: Finishing lambs. Small Rumin. Res., 153: 137–141.
  49. Salami S.A., Valenti B., Bella M., O’grady M.N., Luciano G., Kerry J.P., Jones E., Priolo A., Newbold C.J. (2018). Characterisation of the ruminal fermentation and microbiome in lambs supplemented with hydrolysable and condensed tannins. FEMS Microbiol., 94: fiy061.
  50. Salminen J-P., Karonen M. (2011). Chemical ecology of tannins and other phenolics: we need a change in approach. Funct. Ecol., 25: 325–338.
  51. Sarnataro C., Spanghero M. (2020). In vitro rumen fermentation of feed substrates added with chestnut tannins or an extract from Stevia rebaudiana Bertoni. Anim. Nutr., 6: 54–60.
  52. Seigler D.S. (1998). Chapter 12: Tannins. In: Plant Secondary Metabolism. Kluwer Academic Publishers, Dordrecht, pp. 193–214.
  53. Silanikove N., Perevolotsky A., Provenza F.D. (2001). Use of tannin-binding chemicals to assay for tannins and their negative postingestive effects in ruminants. Anim. Feed Sci. Technol., 91: 69–81.
  54. Singh B., Bhat T.K., Sharma O.P. (2001). Biodegradation of tannic acid in an in vitro ruminal system. Livest. Prod. Sci., 68: 259–262.
  55. Smeriglio A., Barreca D., Bellocco E., Trombetta D. (2017). Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. Brit. J. Pharmacol., 174: 1244–1262.
  56. Śliwiński B.J., Kreuzer M., Wettstein H.-R., Machmüller A. (2002). Rumen fermentation and nitrogen balance of lambs fed diets containing plant extracts rich in tannins and saponins, and associated emissions of nitrogen and methane. Arch. Anim. Nutr., 56: 379–392.
  57. Terrill T.H., Douglas G.B., Foote A.G., Purchas R.W., Wilson G.F., Barry T.N. (1992). Effect of condensed tannins upon body growth and rumen metabolism in sheep grazing sulla (Hedysarum coronarium) and perennial pasture. J. Agric. Sci. Camb., 119: 265–273.
  58. Tong W.Y., Wang H., Waisundara V.Y., Huang D. (2014). Inhibiting enzymatic starch digestion by hydrolysable tannins isolated from Eugenia jambolana. LWT – Food Sci. Tech., 59: 389–395.
  59. Vasta V., Daghio M., Cappuci A., Buccioni A., Serra A., Viti C., Mele M. (2019). Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fibre digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci., 102: 3781–3804.
  60. Wang Z., Yin L., Liu L., Lan X., He J., Wan F., Shen W., Tang S., Tan Z., Yang Y. (2022). Tannic acid reduced apparent protein digestibility and induced oxidative stress and inflammatory response without altering growth performance and ruminal microbiota diversity of Xiangdong black goats. Front. Vet. Sci., 9: 1004841.
  61. Williams A.G., Coleman G.S. (1997). The rumen protozoa. In: The rumen microbial ecosystem, Hobson P.N., Stewart C.S. (eds). 2nd ed. Berlin, Germany: Springer Science & Business Media.
DOI: https://doi.org/10.2478/aoas-2022-0095 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 561 - 570
Submitted on: Apr 25, 2022
Accepted on: Dec 5, 2022
Published on: May 3, 2023
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Małgorzata Paulina Majewska, Renata Miltko, Grzegorz Bełżecki, Aneta Kędzierska, Barbara Kowalik, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.