Have a personal or library account? Click to login

Black Soldier Fly Full-Fat Meal in Atlantic Salmon Nutrition – Part B: Effects on Growth Performance, Feed Utilization, Selected Nutriphysiological Traits and Production Sustainability in Pre-Smolts

Open Access
|Jan 2023

References

  1. Alfiko Y., Xie D., Astuti R.T., Wong J., Wang L. (2022). Insects as a feed ingredient for fish culture: Status and trends. Aquac. Fish, 7: 166–178.10.1016/j.aaf.2021.10.004
  2. Allan G.L., Rowland S.J., Parkinson S., Stone D.A.J., Jantrarotai W. (1999). Nutrient digestibility for juvenile silver perch Bidyanus bidyanus: Development of methods. Aquaculture, 170: 131–145.10.1016/S0044-8486(98)00397-4
  3. Askarian F., Zhou Z., Olsen R.E., Sperstad S., Ringø E. (2012). Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture, 326: 1–8.10.1016/j.aquaculture.2011.10.016
  4. Association of Official Agricultural Chemists (AOAC) (2005). Official Methods of Analysis. AOAC, Arlington, VA, USA.
  5. Austreng E. (1978). Digestibility determination in fish using chromic oxide marking and analysis of contents from different segments of the gastrointestinal tract. Aquaculture, 13: 265–272.10.1016/0044-8486(78)90008-X
  6. Bazoche P., Poret S. (2016). What do trout eat: Acceptance of insects in animal feed. J. Recherche Sci. Soc., 1–4.
  7. Belghit I., Liland N.S., Gjesdal P., Biancarosa I., Menchetti E., Li Y., Waagbø R., Krogdahl Å., Lock E.J. (2019 a). Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture, 503: 609–619.10.1016/j.aquaculture.2018.12.032
  8. Belghit I., Waagbø R., Lock E.J., Liland N.S. (2019 b). Insect-based diets high in lauric acid reduce liver lipids in freshwater Atlantic salmon. Aquac. Nutr., 25: 343–357.10.1111/anu.12860
  9. Bogucka J., Dankowiakowska A., Elminowska-Wenda G., Sobolewska A., Szczerba A., Bednarczyk M. (2016). Effects of prebiotics and synbiotics delivered in ovo on broiler small intestine histomorphology during the first days after hatching. Folia Biol. (Kraków), 64: 131–143.10.3409/fb64_3.131
  10. Bruni L., Belghit I., Lock E.J., Secci G., Taiti C., Parisi G. (2020). Total replacement of dietary fish meal with black soldier fly (Hermetia illucens) larvae does not impair physical, chemical or volatile composition of farmed Atlantic salmon (Salmo salar L.). J. Sci. Food Agric., 100: 1038–1047.10.1002/jsfa.10108
  11. Cardinaletti G., Randazzo B., Messina M., Zarantoniello M., Giorgini E., Zimbelli A., Bruni L., Parisi G., Olivotto I., Tulli F. (2019). Effects of graded dietary inclusion level of full-fat Hermetia illucens prepupae meal in practical diets for rainbow trout (Oncorhynchus mykiss). Animals, 529: 735678.10.1016/j.aquaculture.2020.735678
  12. Choubert G., De la Noüe J., Luquet P. (1982). Digestibility in fish: Improved device for the automatic collection of feces. Aquaculture, 29: 185–189.10.1016/0044-8486(82)90048-5
  13. Davidson J., Kenney P.B., Barrows F.T., Good C., Summerfelt S.T. (2018). Fillet quality and processing attributes of postsmolt Atlantic salmon, Salmo salar, fed a fishmeal-free diet and a fishmeal-based diet in recirculation aquaculture systems. J. World Aquac. Soc., 49: 183–196.10.1111/jwas.12452
  14. De Santis C., Tocher D.R., Ruohonen K., El-Mowafi A., Martin S.A.M., Dehler C.E., Secombes C.J., Crampton V. (2016). Airclassified faba bean protein concentrate is efficiently utilized as a dietary protein source by post-smolt Atlantic salmon (Salmo salar). Aquaculture, 452: 169–177.10.1016/j.aquaculture.2015.10.035
  15. Dietz C., Liebert F. (2018). Does graded substitution of soy protein concentrate by an insect meal respond on growth and N-utilization in Nile tilapia (Oreochromis niloticus)? Aquac. Rep., 12: 43–48.10.1016/j.aqrep.2018.09.001
  16. Dumas A., Raggi T., Barkhouse J., Lewis E., Weltzien E. (2018). The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture, 492: 24–34.10.1016/j.aquaculture.2018.03.038
  17. Egerton S., Wan A., Murphy K., Collins F., Ahern G., Sugrue I., Busca K., Egan F., Muller N., Whooley J., McGinnity P., Culloty S., Ross R.P., Stanton C. (2020). Replacing fishmeal with plant protein in Atlantic salmon (Salmo salar) diets by supplementation with fish protein hydrolysate. Sci. Rep., 10: 1–16.10.1038/s41598-020-60325-7
  18. English G., Wanger G., Colombo S.M. (2021). A review of advancements in black soldier fly (Hermetia illucens) production for dietary inclusion in salmonid feeds. J. Sci. Food Agric., 5: 100164.10.1016/j.jafr.2021.100164
  19. Franco A., Scieuzo C., Salvia R., Petrone A.M., Tafi E., Moretta A., Schmitt E., Falabella P. (2021). Lipids from Hermetia illucens, an innovative and sustainable source. Sustainability, 13: 10198.10.3390/su131810198
  20. Gong Y., Bandara T., Huntley M., Johnson Z.I., Dias J., Dahle D., Sørensen M., Kiron V. (2019). Microalgae Scenedesmus sp. as a potential ingredient in low fishmeal diets for Atlantic salmon (Salmo salar L.). Aquaculture, 501: 455–464.10.1016/j.aquaculture.2018.11.049
  21. Gopalakannan A., Arul V. (2006). Immunomodulatory effects of dietary intake of chitin, chitosan and levamisole on the immune system of Cyprinus carpio and control of Aeromonas hydrophila infection in ponds. Aquaculture, 255: 179–187.10.1016/j.aquaculture.2006.01.012
  22. Hoffmann L., Rawski M., Nogales-Merida S., Mazurkiewicz J. (2020). Dietary inclusion of Tenebrio molitor meal in sea trout larvae rearing: Effects on fish growth performance, survival, condition, and GIT and liver enzymatic activity. Ann. Anim. Sci., 20: 579–598.10.2478/aoas-2020-0002
  23. Hoffmann L., Rawski M., Nogales-Mérida S., Kołodziejski P., Pruszyńska-Oszmałek E., Mazurkiewicz J. (2021). Mealworm meal use in sea trout (Salmo trutta m. trutta, L.) fingerling diets: effects on growth performance, histomorphology of the gastrointestinal tract and blood parameters. Aquac. Nutr., 27: 1512–1528.10.1111/anu.13293
  24. Hossain M.S., Fawole F.J., Labh S.N., Small B.C., Overturf K., Kumar V. (2021). Insect meal inclusion as a novel feed ingredient in soybased diets improves performance of rainbow trout (Oncorhynchus mykiss). Aquaculture, 544: 737096.10.1016/j.aquaculture.2021.737096
  25. Hua K. (2021). A meta-analysis of the effects of replacing fish meals with insect meals on growth performance of fish. Aquaculture, 530: 735732.10.1016/j.aquaculture.2020.735732
  26. Husein Y., Bruni L., Secci G., Taiti C., Belghit I., Lock E.J., Parisi G. (2021). Does sous-vide cooking preserve the chemical and volatile composition of Atlantic salmon (Salmo salar L.) fed Hermetia illucens larvae meal? J. Insects Food Feed, 7: 69–77.10.3920/JIFF2020.0002
  27. Janssen R.H., Vincken J.P., Van Den Broek L.A.M., Fogliano V., Lakemond C.M.M. (2017). Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem., 65: 2275–2278.10.1021/acs.jafc.7b00471
  28. Józefiak A., Nogales-Mérida S., Mikołajczak Z., Rawski M., Kierończyk B., Mazurkiewicz J. (2019). The utilization of fullfat insect meal in rainbow trout (Oncorhynchus mykiss) nutrition: the effects on growth performance, intestinal microbiota and gastrointestinal tract histomorphology. Ann. Anim. Sci., 19: 747–765.10.2478/aoas-2019-0020
  29. Krogdahl Å., Sundby A., Holm H. (2015). Characteristics of digestive processes in Atlantic salmon (Salmo salar). Enzyme pH optima, chyme pH, and enzyme activities. Aquaculture, 449: 27–36.10.1016/j.aquaculture.2015.02.032
  30. Laureati M., Proserpio C., Jucker C., Savoldelli S. (2016). New sustainable protein sources: Consumers’ willingness to adopt insects as feed and food. It. J. Food Sci., 28.
  31. Li Y., Bruni L., Jaramillo-Torres A., Gajardo K., Kortner T.M., Krogdahl A. (2020 a). Differential response of digesta and mucosa-associated intestinal microbiota to dietary black soldier fly (Hermetia illucens) larvae meal in seawater phase Atlantic salmon (Salmo salar). bioRxiv.10.21203/rs.3.rs-62266/v1
  32. Li Y., Kortner T.M., Chikwati E.M., Belghit I., Lock E.J., Krogdahl Å. (2020 b). Total replacement of fish meal with black soldier fly (Hermetia illucens) larvae meal does not compromise the gut health of Atlantic salmon (Salmo salar). Aquaculture, 520: 734967.10.1016/j.aquaculture.2020.734967
  33. Lock E.R., Arsiwalla T., Waagbø R. (2016). Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquac. Nutr., 22: 1202–1213.10.1111/anu.12343
  34. Mancuso T., Baldi L., Gasco L. (2016). An empirical study on consumer acceptance of farmed fish fed on insect meals: the Italian case. Aquac. Int., 24: 1489–1507.10.1007/s10499-016-0007-z
  35. Mikołajczak Z., Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D. (2020). The effect of hydrolyzed insect meals in sea trout fingerling (Salmo trutta m. trutta) diets on growth performance, microbiota and biochemical blood parameters. Animals, 10: 1031.10.3390/ani10061031
  36. Mikołajczak Z., Rawski M., Mazurkiewicz J., Kierończyk B., Kołodziejski P., Pruszyńska-Oszmałek E., Józefiak D. (2022). The first insight into black soldier fly meal in brown trout nutrition as an environmentally sustainable fish meal replacement. Animal, 16: 100516.10.1016/j.animal.2022.100516
  37. Mohan K., Rajan D.K., Muralisankar T., Ganesan A.R., Sathishkumar P., Revathi N. (2022). Use of black soldier fly (Hermetia illucens L.) larvae meal in aquafeeds for a sustainable aquaculture industry: A review of past and future needs. Aquaculture, 553: 738095.10.1016/j.aquaculture.2022.738095
  38. Munshi J.S.D., Dutta H.M. (1998). Fish morphology: Horizon of new research. CRC Press LCC.
  39. National Research Council (2011). Nutrient Requirements of Fish and Shrimp. The National Academies Press, Washington, DC.
  40. Naylor R.L., Hardy R.W., Buschmann A.H., Bush S.R., Cao L., Klinger D.H., Little D.C., Lubchenco J., Shumway S.E., Troell M. (2021). A 20-year retrospective review of global aquaculture. Nature, 591: 551–563.10.1038/s41586-021-03308-6
  41. Nogales-Mérida S., Gobbi P., Józefiak D., Mazurkiewicz J., Dudek K., Rawski M., Kierończyk B., Józefiak A. (2018). Insect meals in fish nutrition. Rev. Aquac., 11: 1080–1103.10.1111/raq.12281
  42. Nordgarden U., Hemre G.I., Hansen T. (2002). Growth and body composition of Atlantic salmon (Salmo salar L.) parr and smolt fed diets varying in protein and lipid contents. Aquaculture, 207: 65–78.10.1016/S0044-8486(01)00750-5
  43. Palma L., Fernandez-Bayo J., Niemeier D., Pitesky M., Vander Gheynst J.S. (2019). Managing high fiber food waste for the cultivation of black soldier fly larvae. npj Sci. Food, 3: 15.10.1038/s41538-019-0047-7
  44. Popoff M., MacLeod M., Leschen W. (2017). Attitudes towards the use of insect-derived materials in Scottish salmon feeds. J. Insects Food Feed, 3: 131–138.10.3920/JIFF2016.0032
  45. Ptak A., Józefiak D., Kierończyk B., Rawski M., Żyła K., Świątkiewicz S. (2013). Effect of different phytases on the performance, nutrient retention and tibia composition in broiler chickens. Arch. Anim. Breed, 56: 1028–1038.10.7482/0003-9438-56-104
  46. Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D. (2020). Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in Siberian sturgeon nutrition: The effects on physical properties of the feed, animal growth performance, and feed acceptance and utilization. Animals, 10: 2119.10.3390/ani10112119
  47. Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D. (2021). Black soldier fly full-fat larvae meal is more profitable than fish meal and fish oil in Siberian sturgeon farming: the effects on aquaculture sustainability, economy and fish GIT development. Animals, 11: 604.10.3390/ani11030604
  48. Renna M., Schiavone A., Gai F., Dabbou S., Lussiana C., Malfatto V., Prearo M., Capucchio M.T., Biasato I., Biasibetti E., De Marco M., Brugiapaglia A., Zoccarato I., Gasco L. (2017). Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. J. Anim. Sci. Biotechnol., 8: 1–13.10.1186/s40104-017-0191-3
  49. Robaina L., Pirhonen J., Mente E., Sánchez J., Goosen N. (2019). Fish diets in aquaponics In: Aquaponics food production systems combined aquaculture and hydroponic production technologies for the future. Springer Nature Switzerland AG, Cham, Switzerland. pp. 340.10.1007/978-3-030-15943-6_13
  50. Roncarati A., Gasco L., Parisi G., Terova G. (2015). Growth performance of common catfish (Ameiurus melas Raf.) fingerlings fed mealworm (Tenebrio molitor) diet. J. Insects Food Feed, 1: 233–240.10.3920/JIFF2014.0006
  51. Sealey W.M., Gaylord T.G., Barrows F.T., Tomberlin J.K., McGuire M.A., Ross C., St-Hilaire S. (2011). Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens. J. World Aquac. Soc., 42: 34–45.10.1111/j.1749-7345.2010.00441.x
  52. Secci G., Mancini S., Iaconisi V., Gasco L., Basto A., Parisi G. (2019). Can the inclusion of black soldier fly (Hermetia illucens) in diet affect the flesh quality/nutritional traits of rainbow trout (Oncorhynchus mykiss) after freezing and cooking? Int. J. Food Sci. Nutr., 70: 161–171.10.1080/09637486.2018.1489529
  53. Skrivanova E., Marounek M., Benda V., Brezina P. (2007). Susceptibility of Escherichia coli, Salmonella sp. and Clostridium perfringens to organic acids and monolaurin. Vet. Med., 51: 81–88.10.17221/5524-VETMED
  54. Sørensen S.L., Park Y., Gong Y., Vasanth G.K., Dahle D., Korsnes K., Phuong T.H., Kiron V., Øyen S., Pittman K., Sørensen M. (2021). Nutrient digestibility, growth, mucosal barrier status, and activity of leucocytes from head kidney of Atlantic salmon fed marineor plant-derived protein and lipid sources. Front. Immunol., 11: 623726.10.3389/fimmu.2020.623726
  55. Stejskal V., Tran H.Q., Prokesova M., Gebauer T., Giang P.T., Gai F., Gasco L. (2020). Partially defatted Hermetia illucens larva meal in diet of Eurasian perch (Perca fluviatilis) juveniles. Animals, 10: 1876.10.3390/ani10101876
  56. Stenberg O.K., Holen E., Piemontese L., Liland N.S., Lock E.J., Espe M., Belghit I. (2019). Effect of dietary replacement of fish meal with insect meal on in vitro bacterial and viral induced gene response in Atlantic salmon (Salmo salar) head kidney leukocytes. Fish Shellfish Immunol., 91: 223–232.10.1016/j.fsi.2019.05.042
  57. Storebakken T. (2009). Atlantic salmon, Salmo salar. In: Nutrient requirements and feeding of finfish for aquaculture, Webster C.D., Lim C. (eds). Cabi Publishing, pp. 79–102.
  58. Szendrő K., Nagy M.Z., Tóth K. (2020). Consumer acceptance of meat from animals reared on insect meal as feed. Animals, 10: 1312.10.3390/ani10081312
  59. Terova G., Gini E., Gasco L., Moroni F., Antonini M., Rimoldi S. (2021). Effects of full replacement of dietary fishmeal with insect meal from Tenebrio molitor on rainbow trout gut and skin microbiota. J. Anim. Sci. Biotechnol., 12: 30.10.1186/s40104-021-00551-9
  60. Tibbetts S.M., Scaife M.A., Armenta R.E. (2020). Apparent digestibility of proximate nutrients, energy and fatty acids in nutritionallybalanced diets with partial or complete replacement of dietary fish oil with microbial oil from a novel Schizochytrium sp. (T18) by juvenile Atlantic salmon (Salmo salar). Aquaculture, 520: 735003.10.1016/j.aquaculture.2020.735003
  61. Verbeke W., Spranghers T., De Clercq P., De Smet S., Sas B., Eeckhout M. (2015). Insects in animal feed: Acceptance and its determinants among farmers, agriculture sector stakeholders and citizens. Anim. Feed Sci. Tech., 204: 72–87.10.1016/j.anifeedsci.2015.04.001
  62. Weththasinghe P., Hansen J., Nøkland D., Lagos L., Rawski M., Øverland M. (2021 a). Full-fat black soldier fly larvae (Hermetia illucens) meal and paste in extruded diets for Atlantic salmon (Salmo salar): Effect on physical pellet quality, nutrient digestibility, nutrient utilization and growth performances. Aquaculture, 530: 735785.10.1016/j.aquaculture.2020.735785
  63. Weththasinghe P., Øvrum Hansen J., Rawski M., Józefiak D., Ghimire S., Øverland M. (2021 b). Insects in Atlantic salmon (Salmo salar) diets – comparison between full-fat, defatted, and de-chitinised meals, and oil and exoskeleton fractions. J. Insects Food Feed, 8: 1–14.10.3920/JIFF2021.0094
  64. Weththasinghe P., Hansen J.Ø., Mydland L.T., Øverland M. (2022) A systematic meta-analysis based review on black soldier fly (Hermetia illucens) as a novel protein source for salmonids. Rev. Aquac., 14: 938–956.10.1111/raq.12635
  65. Ytrestøyl T., Aas T.S., Åsgård T. (2015). Utilisation of feed resources in production of Atlantic salmon (Salmo salar) in Norway. Aquaculture, 448: 365–374.10.1016/j.aquaculture.2015.06.023
DOI: https://doi.org/10.2478/aoas-2022-0071 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 239 - 251
Submitted on: Jun 6, 2022
Accepted on: Sep 9, 2022
Published on: Jan 27, 2023
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Zuzanna Mikołajczak, Jan Mazurkiewicz, Mateusz Rawski, Bartosz Kierończyk, Agata Józefiak, Sylwester Świątkiewicz, Damian Józefiak, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.