Have a personal or library account? Click to login

Black Soldier Fly Full-Fat Meal in Atlantic Salmon Nutrition – Part A: Effects on Growth Performance, Feed Utilization, Selected Nutriphysiological Traits and Production Sustainability in Fries

Open Access
|Jan 2023

References

  1. Acar Ü., Giannetto A., Giannetto D., Kesbiç O.S., Yılmaz S., Romano A., Tezel R., Türker A., Güllü K. Fazio F. (2021). Evaluation of an innovative and sustainable pre-commercial compound as replacement of fish meal in diets for rainbow trout during pre-fattening phase: Effects on growth performances, haematological parameters and fillet quality traits. Animals 11: 3547.10.3390/ani11123547
  2. Allan G.L., Rowland S.J., Parkinson S., Stone D.A.J., Jantrarotai W. (1999). Nutrient digestibility for juvenile silver perch Bidyanus bidyanus: Development of methods. Aquaculture, 170: 131–145.10.1016/S0044-8486(98)00397-4
  3. AOAC (2005). Association of Official Agricultural Chemists. Official Methods of Analysis. AOAC, Arlington, VA, USA.
  4. Arru B., Furesi R., Gasco L., Madau F.A., Pulina P. (2019). The Introduction of insect meal into fish diet: the first economic analysis on European sea bass farming. Sustainability, 11: 1697.10.3390/su11061697
  5. Åsgård T., Shearer K.D. (1997). Dietary phosphorus requirement of juvenile Atlantic salmon, Salmo salar L. Aquac. Nutr., 3: 17–23.10.1046/j.1365-2095.1997.00069.x
  6. Basto A., Matos E., Valente L.M.P. (2020). Nutritional value of different insect larvae meals as protein sources for European sea bass (Dicentrarchus labrax) juveniles. Aquaculture, 521: 735085.10.1016/j.aquaculture.2020.735085
  7. Belghit I., Liland N.S., Waagbø R., Biancarosa I., Pelusio N., Li Y., Krogdahl Å., Lock E.J. (2018). Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture, 491: 72–81.10.1016/j.aquaculture.2018.03.016
  8. Belghit I., Liland N.S., Gjesdal P., Biancarosa I., Menchetti E., Li Y., Waagbø R., Krogdahl Å., Lock E.J. (2019 a). Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture, 503: 609–619.10.1016/j.aquaculture.2018.12.032
  9. Belghit I., Waagbø R., Lock E.J., Liland N.S. (2019 b). Insect-based diets high in lauric acid reduce liver lipids in freshwater Atlantic salmon. Aquac. Nutr., 25: 343–357.10.1111/anu.12860
  10. Biancarosa I., Sele V., Belghit I., Ørnsrud R., Lock E.J., Amlund H. (2019). Replacing fish meal with insect meal in the diet of Atlantic salmon (Salmo salar) does not impact the amount of contaminants in the feed and it lowers accumulation of arsenic in the fillet. Food Addit. Contam. Part A Chem. Anal. Control. Expo Risk Assess, 36: 1191–1205.10.1080/19440049.2019.1619938
  11. Bogucka J., Dankowiakowska A., Elminowska-Wenda G., Sobolewska A., Szczerba A., Bednarczyk M. (2016). Effects of prebiotics and synbiotics delivered in ovo on broiler small intestine histomorphology during the first days after hatching. Folia Biol. (Kraków), 64: 131–143.10.3409/fb64_3.131
  12. Bruni L., Randazzo B., Cardinaletti G., Zarantoniello M., Mina F., Secci G., Tulli F., Olivotto I., Parisi G. (2020). Dietary inclusion of full-fat Hermetia illucens prepupae meal in practical diets for rainbow trout (Oncorhynchus mykiss): Lipid metabolism and fillet quality investigations. Aquaculture, 529: 735678.10.1016/j.aquaculture.2020.735678
  13. Cardinaletti G., Randazzo B., Messina M., Zarantoniello M., Giorgini E., Zimbelli A., Bruni L., Parisi G., Olivotto I., Tulli F. (2019). Effects of graded dietary inclusion level of full-fat Hermetia illucens prepupae meal in practical diets for rainbow trout (Oncorhynchus mykiss). Animals, 9: 251.10.3390/ani9050251
  14. Das H.K., Hattula M.T., Myllymäki O.M., Mälkki Y. (1993). Effects of formulation and processing variables on dry fish feed pellets containing fish waste. J. Sci. Food Agric., 61: 181–187.10.1002/jsfa.2740610208
  15. Demirci B., Terzi F., Kesbic O.S., Acar U., Yilmaz S., Kesbic F.I. (2021). Does dietary incorporation level of pea protein isolate influence the digestive system morphology in rainbow trout (Oncorhynchus mykiss)? Anat. Histol. Embryol., 50: 956–964.10.1111/ahe.12740
  16. Elia A.C., Capucchio M.T., Caldaroni B., Magara G., Dörr A.J.M., Biasato I., Biasibetti E., Righetti M., Pastorino P., Prearo M., Gai F., Schiavone A., Gasco L. (2018). Influence of Hermetia illucens meal dietary inclusion on the histological traits, gut mucin composition and the oxidative stress biomarkers in rainbow trout (Oncorhynchus mykiss). Aquaculture, 496: 50–57.10.1016/j.aquaculture.2018.07.009
  17. Fawole F.J., Labh S.N., Hossain M.S., Overturf K., Small B.C., Welker T.L., Hardy R.W., Kumar V. (2021). Insect (black soldier fly larvae) oil as a potential substitute for fish or soy oil in the fish meal-based diet of juvenile rainbow trout (Oncorhynchus mykiss). Anim. Nutr., 7: 1360–1370.10.1016/j.aninu.2021.07.008
  18. Finke M.D. (2007). Estimate of chitin in raw whole insects. Zoo Biology: published in affiliation with the American Zoo and Aquarium Association, 26: 105–115.10.1002/zoo.20123
  19. Fisher H.J., Collins S.A., Hanson C., Mason B., Colombo S.M., Anderson D.M. (2020). Black soldier fly larvae meal as a protein source in low fish meal diets for Atlantic salmon (Salmo salar). Aquaculture, 521: 734978.10.1016/j.aquaculture.2020.734978
  20. Galkanda-Arachchige H.S.C., Wilson A.E., Davis D.A. (2020). Success of fishmeal replacement through poultry by-product meal in aquaculture feed formulations: a meta-analysis. Rev. Aquac., 12: 1624–1636.10.1111/raq.12401
  21. Gasco L., Gai F., Maricchiolo G., Genovese L., Ragonese S., Bottari T., Caruso G. (2018). Fishmeal alternative protein sources for aquaculture feeds. In: Feeds for the aquaculture sector. Springer, Cham. pp. 1–28.10.1007/978-3-319-77941-6_1
  22. Gaudioso G., Marzorati G., Faccenda F., Weil T., Lunelli F., Cardinaletti G., Marino G., Olivotto I., Parisi G., Tibaldi E., Tuohy K.M., Fava F. (2021). Processed animal proteins from insect and poultry by-products in a fish meal-free diet for rainbow trout: Impact on intestinal microbiota and inflammatory markers. Int. J. Mol. Sci., 22: 5454.10.3390/ijms22115454
  23. Goyal S., Ott D., Liebscher J., Höfling D., Müller A., Dautz J., Gutzeit H.O., Schmidt D., Reuss R. (2021). Sustainability analysis of fish feed derived from aquatic plant and insect. Sustainability, 13: 7371.10.3390/su13137371
  24. Gündoğdu S., Eroldoğan O.T., Evliyaoğlu E., Turchini G.M., Wu X.G. (2021). Fish out, plastic in: Global pattern of plastics in commercial fishmeal. Aquaculture, 534: 736316.10.1016/j.aquaculture.2020.736316
  25. Henry M., Gasco L., Piccolo G., Fountoulaki E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Technol., 203: 1–22.10.1016/j.anifeedsci.2015.03.001
  26. Hoffmann L., Rawski M., Nogales-Merida S., Mazurkiewicz J. (2020). Dietary inclusion of Tenebrio molitor meal in sea trout larvae rearing: Effects on fish growth performance, survival, condition, and GIT and liver enzymatic activity. Ann. Anim. Sci., 20: 579–598.10.2478/aoas-2020-0002
  27. Hoffmann L., Rawski M., Nogales-Mérida S., Kołodziejski P., Pruszyńska-Oszmałek E., Mazurkiewicz J. (2021 a). Mealworm meal use in sea trout (Salmo trutta m. trutta, L.) fingerling diets: effects on growth performance, histomorphology of the gastrointestinal tract and blood parameters. Aquac. Nutr., 27: 1512–1528.10.1111/anu.13293
  28. Hoffmann L., Rawski M., Pruszyńska-Oszmałek E., Kołodziejski P. Mazurkiewicz J. (2021 b). Environmentally sustainable feeding system for sea trout (Salmo trutta m. trutta): Live food and insect meal-based diets in larval rearing. Aquac. Rep., 21: 100795.10.1016/j.aqrep.2021.100795
  29. Hosfeld C.D., Hammer J., Handeland S.O., Fivelstad S., Stefansson S.O. (2009). Effects of fish density on growth and smoltification in intensive production of Atlantic salmon (Salmo salar L.). Aquaculture, 294: 236–241.10.1016/j.aquaculture.2009.06.003
  30. Huang Y., Wen X., Li S., Li W., Zhu D. (2016). Effects of dietary lipid levels on growth, feed utilization, body composition, fatty acid profiles and antioxidant parameters of juvenile chu’s croaker Nibea coibor. Aquac. Int., 24: 1229–1245.10.1007/s10499-016-9980-5
  31. Irungu F.G., Mutungi C.M., Faraj A.K., Affognon H., Kibet N., Tanga C., Ekesi S., Nakimbugwe D., Fiaboe K.K.M. (2018). Physicochemical properties of extruded aquafeed pellets containing black soldier fly (Hermetia illucens) larvae and adult cricket (Acheta domesticus) meals. J. Insects Food Feed, 4: 19–30.10.3920/JIFF2017.0008
  32. Jannathulla R., Rajaram V., Kalanjiam R., Ambasankar K., Muralidhar M., Dayal J.S. (2019). Fishmeal availability in the scenarios of climate change: Inevitability of fishmeal replacement in aquafeeds and approaches for the utilization of plant protein sources. Aquac. Res., 50: 3493–3506.10.1111/are.14324
  33. Janssen R.H., Vincken J.P., Van Den Broek L.A.M., Fogliano V., Lakemond C.M.M. (2017). Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem., 65: 2275–2278.10.1021/acs.jafc.7b00471
  34. Józefiak A., Nogales-Mérida S., Mikołajczak Z., Rawski M., Kierończyk B., Mazurkiewicz J. (2019). The utilization of full-fat insect meal in rainbow trout (Oncorhynchus mykiss) nutrition: the effects on growth performance, intestinal microbiota and gastrointestinal tract histomorphology. Ann. Anim. Sci., 19: 747–765.10.2478/aoas-2019-0020
  35. Juntti S.A., Fernald R.D. (2016). Timing reproduction in teleost fish: cues and mechanisms. Curr. Opin. Neurobiol., 38: 57–62.10.1016/j.conb.2016.02.006
  36. Kannadhason S., Muthukumarappan K., Rosentrater K. (2009). Effects of ingredients and extrusion parameters on aquafeeds containing DDGS and tapioca starch. J. Aquac. Feed Sci. Nutr., 1: 6–21.
  37. Ketola H.G. (1975). Requirement of Atlantic salmon for dietary phosphorus. Trans. Am. Fish Soc., 104: 548–551.10.1577/1548-8659(1975)104<;548:ROASFD>2.0.CO;2
  38. Khater E.S.G., Bahnasawy A.H., Ali S.A. (2014). Physical and mechanical properties of fish feed pellets. J. Food Process Technol., 5: 1.10.4172/2157-7110.1000378
  39. Kierończyk B., Rawski M., Józefiak A., Mazurkiewicz J., Świątkiewicz S., Siwek M., Bednarczyk M., Szumacher-Strabel M., Cieślak A., Benzertiha A., Józefiak D. (2018). Effects of replacing soybean oil with selected insect fats on broilers. Anim. Feed Sci. Tech., 240: 170–183.10.1016/j.anifeedsci.2018.04.002
  40. Kierończyk B., Sypniewski J., Rawski M., Czekała W., Swiatkiewicz S., Józefiak D. (2020). From waste to sustainable feed material: the effect of Hermetia Illucens oil on the growth performance, nutrient digestibility, and gastrointestinal tract morphometry of broiler chickens. Ann. Anim. Sci., 20: 157–177.10.2478/aoas-2019-0066
  41. Lazzarotto V., Corraze G., Leprevost A., Quillet E., Dupont-Nivet M., Médale F. (2015). Three-year breeding cycle of rainbow trout (Oncorhynchus mykiss) fed a plant-based diet, totally free of marine resources: Consequences for reproduction, fatty acid composition and progeny survival. PLoS One, 10(2), e0117609.10.1371/journal.pone.0117609432009525658483
  42. Leary S., Underwood W., Anthony R., Cartner S. (2013). AVMA guidelines for the euthanasia of animals: 2013 edition. Schaumburg, IL: American Veterinary Medical Association.
  43. Li Y., Bruni L., Jaramillo-Torres A., Kortner T.M., Chikwati E.M., Belghit I., Lock E.J., Krogdahl Å. (2019). Gut health and microbiota in post-smolt Atlantic salmon (Salmo salar) fed larvae meal from black soldier fly (Hermetia illucens). In: Aquaculture Europe, 2019.10.1016/j.fsi.2018.12.057
  44. Li Y., Kortner T.M., Chikwati E.M., Belghit I., Lock E.J., Krogdahl Å. (2020). Total replacement of fish meal with black soldier fly (Hermetia illucens) larvae meal does not compromise the gut health of Atlantic salmon (Salmo salar). Aquaculture, 520: 734967.10.1016/j.aquaculture.2020.734967
  45. Liu K., Frost J., Welker T.L., Barrows F.T. (2021). Comparison of new and conventional processing methods for their effects on physical properties of fish feed. Anim. Feed Sci. Tech., 273: 114818.10.1016/j.anifeedsci.2021.114818
  46. Luthada-Raswiswi R., Mukaratirwa S., O’Brien G. (2021). Animal protein sources as a substitute for fishmeal in aquaculture diets: a systematic review and meta-analysis. Appl. Sci., 11: 3854.10.3390/app11093854
  47. Marono S., Piccolo G., Loponte R., Meo C. Di, Attia Y.A., Nizza A. Bovera F. (2015). In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits. Ital. J. Anim. Sci., 14: 3889.10.4081/ijas.2015.3889
  48. Meneguz M., Schiavone A., Gai F., Dama A., Lussiana C., Renna M., Gasco L. (2018). Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J. Sci. Food Agric., 98: 5776–5784.10.1002/jsfa.9127
  49. Mikołajczak Z., Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D. (2020). The effect of hydrolyzed insect meals in sea trout fingerling (Salmo trutta m. trutta) diets on growth performance, microbiota and biochemical blood parameters. Animals, 10: 1031.10.3390/ani10061031
  50. Mikołajczak Z., Rawski M., Mazurkiewicz J., Kierończyk B., Kołodziejski P., Pruszyńska-Oszmałek E., Józefiak D. (2022). The first insight into black soldier fly meal in brown trout nutrition as an environmentally sustainable fish meal replacement. Animal, 16: 100516.10.1016/j.animal.2022.100516
  51. Munshi J.S.D., Dutta H.M. (1998). Fish morphology: Horizon of new research. CRC Press LCC.
  52. Myers W.D., Ludden P.A., Nayigihugu V., Hess B.W. (2004). Technical note: A procedure for the preparation and quantitative analysis of samples for titanium dioxide. J. Anim. Sci., 82: 179–183.10.2527/2004.821179x
  53. National Research Council (2011). Nutrient Requirements of Fish and Shrimp. The National Academies Press, Washington, DC.
  54. Naylor R.L., Hardy R.W., Buschmann A.H., Bush S.R., Cao L., Klinger D.H., Little D.C., Lubchenco J., Shumway S.E., Troell M. (2021). A 20-year retrospective review of global aquaculture. Nature, 591: 551–563.10.1038/s41586-021-03308-6
  55. Nogales-Mérida S., Gobbi P., Józefiak D., Mazurkiewicz J., Dudek K., Rawski M., Kierończyk B., Józefiak A. (2018). Insect meals in fish nutrition. Rev. Aquac., 11: 1080–1103.10.1111/raq.12281
  56. Olsen R.E., Suontama J., Langmyhr E., Mundheim H., Ringø E., Melle W., Malde M.K., Hemre G.I. (2006). The replacement of fish meal with Antarctic krill, Euphausia superba in diets for Atlantic salmon, Salmo salar. Aquac. Nutr., 12: 280–290.10.1111/j.1365-2095.2006.00400.x
  57. Ptak A., Józefiak D., Kierończyk B., Rawski M., Żyła K., Świątkiewicz S. (2013). Effect of different phytases on the performance, nutrient retention and tibia composition in broiler chickens. Arch. Anim. Breed, 56: 1028–1038.10.7482/0003-9438-56-104
  58. Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D. (2020). Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in Siberian sturgeon nutrition: The effects on physical properties of the feed, animal growth performance, and feed acceptance and utilization. Animals, 10: 2119.10.3390/ani10112119
  59. Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D. (2021). Black soldier fly full-fat larvae meal is more profitable than fish meal and fish oil in Siberian sturgeon farming: the effects on aquaculture sustainability, economy and fish GIT development. Animals, 11: 604.10.3390/ani11030604
  60. Renna M., Schiavone A., Gai F., Dabbou S., Lussiana C., Malfatto V., Prearo M., Capucchio M.T., Biasato I., Biasibetti E., De Marco M., Brugiapaglia A., Zoccarato I., Gasco L. (2017). Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. J. Anim. Sci. Biotechnol., 8: 1–13.10.1186/s40104-017-0191-3
  61. Spranghers T., Ottoboni M., Klootwijk C., Ovyn A., Deboosere S., De Meulenaer B., Michiels J., Eeckhout M., De Clercq P., De Smet S. (2017). Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric., 97: 2594–2600.10.1002/jsfa.8081
  62. Stejskal V., Tran H.Q., Prokesova M., Gebauer T., Giang P.T., Gai F., Gasco L. (2020). Partially defatted Hermetia illucens larva meal in diet of Eurasian perch (Perca fluviatilis) juveniles. Animals, 10: 1876.10.3390/ani10101876
  63. Stenberg O.K., Holen E., Piemontese L., Liland N.S., Lock E.J., Espe M., Belghit I. (2019). Effect of dietary replacement of fish meal with insect meal on in vitro bacterial and viral induced gene response in Atlantic salmon (Salmo salar) head kidney leukocytes. Fish Shellfish Immunol, 91: 223–232.10.1016/j.fsi.2019.05.042
  64. Storebakken T. (2009). Atlantic salmon, Salmo salar. In: Nutrient requirements and feeding of finfish for aquaculture, Webster C.D., Lim C. (eds). CABI Publishing, pp. 79–102.
  65. Tang Z., Yin Y., Zhang Y., Huang R., Sun Z., Li T., Chu W., Kong X., Li L., Geng M., Tu Q. (2008). Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin–lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21 d. Br. J. Nutr., 101: 998–1005.10.1017/S0007114508055633
  66. Umar S., Kamarudin M.S., Ramezani-Fard E. (2013). Physical properties of extruded aquafeed with a combination of sago and tapioca starches at different moisture contents. Anim. Feed Sci. Technol., 183: 51–55.10.1016/j.anifeedsci.2013.03.009
  67. Weththasinghe P., Hansen J., Nøkland D., Lagos L., Rawski M., Øverland M. (2021 a). Full-fat black soldier fly larvae (Hermetia illucens) meal and paste in extruded diets for Atlantic salmon (Salmo salar): Effect on physical pellet quality, nutrient digestibility, nutrient utilization and growth performances. Aquaculture, 530: 735785.10.1016/j.aquaculture.2020.735785
  68. Weththasinghe P., Øvrum Hansen J., Rawski M., Józefiak D., Ghimire S., Øverland M. (2021 b). Insects in Atlantic salmon (Salmo salar) diets – comparison between full-fat, defatted, and de-chitinised meals, and oil and exoskeleton fractions. J. Insects Food Feed, 8: 1235–1247.10.3920/JIFF2021.0094
  69. Xia J., Ge C., Yao H. (2021). Antimicrobial peptides from black soldier fly (Hermetia illucens) as potential antimicrobial factors representing an alternative to antibiotics in livestock farming. Animals, 11: 1937.10.3390/ani11071937
  70. Zarantoniello M., Randazzo B., Nozzi V., Truzzi C., Giorgini E., Cardinaletti G., Freddi L., Ratti S., Girolametti F., Osimani A., Notarstefano V., Milanović V., Riolo P., Isidoro N., Tulli F., Gioacchini G., Olivotto I. (2021). Physiological responses of Siberian sturgeon (Acipenser baerii) juveniles fed on full-fat insect-based diet in an aquaponic system. Science, 11: 1–13.10.1038/s41598-020-80379-x
DOI: https://doi.org/10.2478/aoas-2022-0070 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 225 - 238
Submitted on: Jun 6, 2022
Accepted on: Sep 9, 2022
Published on: Jan 27, 2023
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Zuzanna Mikołajczak, Jan Mazurkiewicz, Mateusz Rawski, Bartosz Kierończyk, Agata Józefiak, Sylwester Świątkiewicz, Damian Józefiak, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.