Have a personal or library account? Click to login

Chemical body composition and bone growth of young pigs as affected by deficiency, adequate and excess of dietary phosphorus supply

Open Access
|Oct 2022

References

  1. RFES. Beyer M., Chudy A., Hoffmann L., Jentsch W., Laube W., Nehring K., Schiemann R. (2003). Rostock Feed Evaluation System, editors: Jentsch W., Chudy A., Beyer M.
  2. AOAC (2011). Official Methods of Analysis, 18th ed. Association of Official Analytical Chemists, Gaithersburg, MD, USA.
  3. Arouca C.L.C., de Oliveira Silva F.C., de Oliveira Fontes D., Donzele J.L, de Oliveira R.F.M., Haese D., Kill J.L., de Paula E. (2012). Available phosphorus levels for 95 to 120 kg barrows genetically selected for lean gain. Rev. Bras. Zoo., 41: 1433–1441.10.1590/S1516-35982012000600017
  4. Becker S.L., Gould S.A., Petry A.L., Kellesving L.M., Patience J.F. (2020). Adverse effects on growth performance and bone development in nursery pigs fed diets marginally deficient in phosphorus with increasing calcium to available phosphorus ratios. J. Anim. Sci., 98: 1–8.10.1093/jas/skaa325
  5. Cordell D., Rosemarin A., Schroder J.J., Smit A.L. (2011). Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere, 84: 747–758.10.1016/j.chemosphere.2011.02.032
  6. Czarnogorski M., Woda C.B., Schulkin J., Mulroney S.E. (2004). Induction of a phosphate appetite in adult male and female rats. Exp. Biol. Med., 229: 914–919.10.1177/153537020422900907
  7. Eklou-Kalonji E., Zerath E., Colin C., Lacroix C., Holy X., Denis I., Pointillart A. (1999). Calcium-regulating hormones, bone mineral content, breaking load and trabecular remodeling are altered in growing pigs fed calcium-deficient diets. J. Nutri., 129: 188–193.10.1093/jn/129.1.188
  8. Fammatre C.A., Mahan D.C., Fetter A.W., Grifo A.P., Judy J.K. (1977). Effects of dietary protein, calcium and phosphorus levels for growing and finishing swine. J. Anim. Sci., 44: 65–71.10.2527/jas1977.44165x
  9. Fandrejewski H., Weremko D., Raj S., Skiba G, Han I.K. (1999). Performance, body and carcass composition and bone characteristics of pigs fed rapeseed and soybean meal-cereal diets supplemented with microbial phytase. J. Anim. Feed Sci., 8: 533–547.10.22358/jafs/69129/1999
  10. Fernández J.A. (1995a) Calcium and phosphorus metabolism in growing pigs. I. Absorption and balance studies. Livest. Prod. Sci., 41: 233-24110.1016/0301-6226(94)00063-D
  11. Fernández J. A. (1995b). Calcium and phosphorus-metabolism in growing pigs. II. Simultaneous radio-calcium and radio-phosphorus kinetics. Livest. Prod. Sci., 41: 243–254.10.1016/0301-6226(94)00064-E
  12. Fernández J. A. (1995). Calcium and phosphorus metabolism in growing pigs. III. A model resolution. Livest. Prod. Sci., 41: 255–261.10.1016/0301-6226(94)00065-F
  13. Gonzalo E., Létourneau-Montminy M. P., Narcy A., Bernier J. F., Pomar C. (2018). Consequences of dietary calcium and phosphorus depletion and repletion feeding sequences on growth performance and body composition of growing pigs. Animal, 12, 1165–1173.10.1017/S175173111700256729065940
  14. Gutierrez N. A., Serão N. V. L., Elsbernd A. J., Hansen S. L., Walk C. L., Bedford M. R., Patience J. F. (2015). Quantitative relationships between standardized total tract digestible phosphorus and total calcium intakes and their retention and excretion in growing pigs fed corn–soybean meal diets. J. Anim. Sci., 93: 2174–2182.10.2527/jas.2014-8623
  15. Harper A. F., Kornegay E. T., Schell T. C. (1997). Phytase supplementation of low-phosphorus growing-finishing pig diets improves performance, phosphorus digestibility, and bone mineralization and reduces phosphorus excretion. J. Anim. Sci., 75: 3174–3186.10.2527/1997.75123174x
  16. Hastad C.W., Dritz S.S., Tokach M.D., Goodband R. D., Nelssen J. L., DeRouchey J.M., Boyd R.D., Johnston M. E. (2004). Phosphorus requirements of growing-finishing pigs reared in a commercial environment. J. Anim. Sci., 82: 2945–2952.10.2527/2004.82102945x
  17. Huttunen M.M., Tillman I., Viljakainen H.T., Tuukkanen J., Peng Z., Pekkinen M., Lamberg-Allardt C.J.E. (2007). High dietary phosphate intake reduces bone strength in the growing rat skeleton. J. Bone Mineral Res., 22: 83–92.10.1359/jbmr.061009
  18. Kyriazakis I. (2008). A review of our current understanding of Phosphorus requirement of pigs. Kenilworth: BPEX. https://pork.ahdb.org.uk/media/2135/RIA-1-Phosphorus-req.pdf.
  19. Kotarbińska M. (1969). Badania nad przemianą energii u rosnących świń. Instytut Zootechniki, Wyd. własne, Wrocław, pp. 1–67.
  20. Létourneau-Montminy M.P., Narcy A., Dourmad J.Y., Crenshaw T.D., Pomar C. (2015). Modelling the metabolic fate of dietary phosphorus and calcium and the dynamics of body ash content in growing pigs. J. Anim. Sci., 93: 1200–1217.10.2527/jas.2014-8519
  21. Liesegang A., Ursprung R., Gasser J., Sassi M. L., Rristeli J., Riond J. L., Wanner M. J. (2002). Influence of dietary phosphorus deficiency with or without addition of fumaric acid to a diet in pigs on bone parameters. Anim. Physiol. Anim. Nutr., 86: 1–16.10.1046/j.1439-0396.2002.00355.x
  22. Lüdke H., Schöne F., Geinitz D., Brys J. (1999). Untersuchungen zur Phosphorversorgung von Schweinen im Lebendmasseabschnitt 11–38 kg. Archiv. Anim. Nutr., 11/12: 1085–1095.10.1080/17450399009421093
  23. Mahan D.C., Shields Jr R.G. (1998). Macro- and micromineral composition of pigs from birth to 145 kilograms of body weight. J. Anim. Sci., 76: 506–512.10.2527/1998.762506x
  24. Misiura M.M., Filipe J.A.N., Walk C.L., Kyriazakis I. (2020). How do pigs deal with dietary phosphorus deficiency? Brit. J. Nutr., 124: 256–272.10.1017/S0007114520000975
  25. Narcy A., Rousseau X., Même N., Magnin M., Nys Y. (2015). Impact of dietary phosphorus and calcium levels on their deposition in soft and bone tissues in chickens. In Proceedings of the 20th European Symposium of Poultry Nutrition, 24–27 August 2015, Prague, CZR, pp. 217.
  26. Nicodemo M.L., Scott D., Buchan W., Duncan A., Robins S.P. (1998). Effects of variations in dietary calcium and phosphorus supply on plasma and bone osteocalcin concentrations and bone mineralization in growing pigs. The Physiological Society. https://doi.org/10.1113/expphysiol.1998.sp004147.9793786
  27. Nieto S., Kiefer C., de Souza K.M.R., Gonçalves L.M.P., Bonin M.N., Santos T.M.B., Carvalho K.C.N., Santos A.P. (2016). Digestible phosphorus levels for barrows from 50 to 80 kg. R. Bras. Zootec., 45: 242–249.10.1590/S1806-92902016000500006
  28. NRC (2012). Nutrient requirements of swine. 11th ed. National Academy Press, Washington, DC.O’Quinn P.R., Knabe D.A., Gregg E.J. (1997). Digestible Phosphorus Needs of Terminal-Cross Growing-Finishing Pigs. J. Anim. Sci., 75: 1308–1318.10.2527/1997.7551308x9159278
  29. Oster M., Gerlinger C., Heide K., Just F., Borgelt L., Wolf P., Polley C., Vollmar B., Muráni E., Ponsuksili S., Wimmers K. (2018). Lower dietary phosphorus supply in pigs match both animal welfare aspects and resource efficiency. Ambio, 47(suppl. 1): S20–S29.10.1007/s13280-017-0969-8
  30. Pettey L.A., Cromwell G.L., Jang Y.D., Lindemann M.D. (2015). Estimation of calcium and phosphorus content in growing and finishing pigs: Whole empty body components and relative accretion rates. J. Anim. Sci., 93: 158–167.10.2527/jas.2014-7602
  31. Pierre J.M. (2008). Transcription factors controlling osteoblastogenesis. Arch. Biochem. Biophys., 473: 98–105.10.1016/j.abb.2008.02.030
  32. Pond W.G., Walker E.F., Kirtland Jr D. (1978). Effect of dietary Ca and P levels from 40 to 100 kg body weight on weight gain and bone and soft tissue mineral concentrations. J. Anim. Sci., 46: 686–691.10.2527/jas1978.463686x
  33. Poulsen H.D. (1994). Reduced dietary phosphorus for growing and finishing pigs: effects on performance, retention and excretion. Forskningsrapport. Statens Husdyrbrugsforsoeg (Denmark), pp. 29, SSN : 0106–8547.
  34. Regulation (EC) No 1924/2006 of the European Parliament and of the Council with regard to the list of nutrition claims.
  35. O’Quinn P.R., Knabe D.A., Gregg E.J., Lusas E.W. (1997). Nutritional value for swine of soybean meal produced by isopropyl alcohol extraction. J. Anim. Sci., 75 (3): 714–719.10.2527/1997.753714x
  36. Reinhart G.A., Mahan D.C. (1986). Effect of various calcium : phosphorus ratios at low and high dietary phosphorus for starter, grower and finishing swine. J. Anim. Sci., 63: 457–466.10.2527/jas1986.632457x
  37. Różycki M. (1996). Rules at evaluating the pigs in Pig Slaughter Testing Station. State of pig breeding and pig evaluation results. Krakow: National Research Institute of Animal. Production,. 69–82. In Polish.
  38. Ruan, Z., Zhang Y.G., Yin Y.L., Li T.J., Huang R.L., Kim S.W., Wu G.Y., Deng Z.Y. (2007). Dietary requirement of true digestible phosphorus and total calcium for growing pigs. Asian-Austr. J. Anim. Sci., 20: 1236–1242.10.5713/ajas.2007.1236
  39. Sands J.S., Ragland D., Baxter C., Joern B.C., Sauber T.E., Adeola O. (2001). Phosphorus bioavailability, growth performance, and nutrient balance in pigs fed high available phosphorus corn and phytase. J. Anim. Sci., 79: 2134–2142.10.2527/2001.7982134x
  40. Sørensen K.U., Tauson A.H., Poulsen H.D. (2018a). Long term differentiated phosphorus supply from below to above requirement affects nutrient balance and retention, body weight gain and bone growth in growing-finishing pigs. Liv. Sci., 211: 14–20.10.1016/j.livsci.2018.03.002
  41. Sørensen K.U., Marlena C., Kruger M.C., Hansen-Møller J., Poulsen H.D. (2018b). Bone biochemical markers for assessment of bone responses to differentiated phosphorus supply in growing-finishing pigs. J. Anim. Sci., 96: 4693–4703.10.1093/jas/sky311624782930085053
  42. Sørensen K.U., Shiguetomi-Medina J.M., Poulsen H.D. (2019). Mineralisation of tubular bones are affected differently by low phosphorus supply in growing-finishing pigs. J. Sci. Food Agric., 99: 3628–3634.10.1002/jsfa.9583
  43. Suttle N.F. (2010). Mineral nutrition of livestock, 4th edition. Editor: Suttle N. Wallingford: CABI. Available online at http://www.cabi.org/cabebooks/ebook/20103291114.10.1079/9781845934729.0000
  44. Sweeny J.M., Seibert H.E., Woda C., Schulkin J., Haramati A., Mulroney S.E. (1998). Evidence for induction of a phosphate appetite in juvenile rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 275: R1358–R1365.10.1152/ajpregu.1998.275.4.R1358
  45. Swelum A.A., Saadeldin I.M., Alowaimer A.N., Mahmoud A., Abouheif M.A. (2017). Impacts of restricted feeding and realimentation on bone development and plasma concentrations of bone-specific biomarkers in lambs. J. Anim. Feed Sci., 26: 116–122.10.22358/jafs/74008/2017
  46. Symeou V., Leinonen I., Kyriazakis I. (2014). Modelling phosphorus intake, digestion, retention and excretion in growing and finishing pigs: model description. Animal, 8: 1612–1621.10.1017/S1751731114001402
  47. Valable A.S., Narcy A., Duclos M.J., Pomar C., Page G., Nasir Z., Magnin M., Létourneau-Montminy M.P. (2018). Effects of dietary calcium and phosphorus deficiency and subsequent recovery on broiler chicken growth performance and bone characteristics. Animal, 12: 1555–1563.10.1017/S1751731117003093
  48. Varley P.F., Sweeney T., Ryan M.T., O’Doherty J.V. (2011). The effect of phosphorus restriction during the weaner-grower phase on compensatory growth, serum osteocalcin and bone mineralization in gilts. Liv. Sci., 135: 282–288.10.1016/j.livsci.2010.07.025
  49. Veum T.L., Ellersieck M.R. (2008). Effect of low doses of Aspergillus niger phytase on growth performance, bone strength, and nutrient absorption and excretion by growing and finishing swine fed corn-soybean meal diets deficient in available phosphorus and calcium. J. Anim. Sci., 86: 858–870.10.2527/jas.2007-0312
  50. Vier C.M., Dritz S.S., Wu F., Tokach M.D., de Rouchey J.M., Goodband R.D., Gonclaves M.A.D., Orland U.A.D., Chitakasempornkul K., Woodworth J.C. (2019). Standardized total tract digestible phosphorus requirement of 24 to 130kg pigs. J. Anim. Sci., 97: 4023–4031.10.1093/jas/skz256
  51. Vipperman Jr P. E., Peo Jr E.R., Cunnin gham P.J. (1974). Effect of dietary calcium and phosphorus level upon calcium, phosphorus and nitrogen balance in swine. J. Anim. Sci., 38: 758–765.10.2527/jas1974.384758x
  52. Wagner J.R., Schinckel A.P., Chen W., Forrest J.C., Coe B.L. (1999). Analysis of body composition changes of swine during growth and development. J. Anim. Sci., 77: 1442–1466.10.2527/1999.7761442x
  53. Yan F., Angel R., Ashwell C., Mitchell A., Christman M. (2005). Evaluation of the broiler’s ability to adapt to an early moderate deficiency of phosphorus and calcium. Poult. Sci., 84: 1232–1241.10.1093/ps/84.8.1232
  54. Yang X.E., Wu X., Hao H.L., He Z.L. (2008). Mechanisms and assessment of water eutrophication. J. Zhejiang Univ., 9: 197–209.10.1631/jzus.B0710626
DOI: https://doi.org/10.2478/aoas-2022-0061 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1363 - 1372
Submitted on: May 27, 2022
Accepted on: Aug 21, 2022
Published on: Oct 29, 2022
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Monika Sobol, Grzegorz Skiba, Stanisława Raj, Paweł Kowalczyk, Karol Kramkowski, Małgorzata Świątkiewicz, Eugeniusz R. Grela, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.