References
- Abd El Tawab A.M., Kholif A.E., Khattab M.S.A., Shaaban M.M., Hadhoud F.I., Mostafa M.M.M., Olafadehan O.A. (2020). Feed utilization and lactational performance of Barki sheep fed diets containing thyme or celery. Small Rumin. Res. 192: 106249. https://doi.org/10.1016/j.smallrumres.2020.106249
- Abdel-Raheem S.M., Hassan E.H. (2021). Effects of dietary inclusion of Moringa oleifera leaf meal on nutrient digestibility, rumen fermentation, ruminal enzyme activities and growth performance of buffalo calves. Saudi J. Biol. Sci. 28: 4430–4436. https://doi.org/10.1016/j.sjbs.2021.04.037832493834354427
- AOAC (2005). Official Methods of Analysis of AOAC International, 18th ed, Association of Officiating Analytical Chemists. AOAC International, Washington DC.
- Cohen-Zinder M., Weinberg Z., Leibovich H., Chen Y., Rosen M., Sagi G., Orlov A., Agmon R., Yishay M., Miron J., Shabtay A. (2017). Ensiled Moringa oleifera: An antioxidant-rich feed that improves dairy cattle performance. J. Agric. Sci. 155: 1174–1186. https://doi.org/10.1017/S0021859617000387
- Ebeid H.M., Kholif A.E., Chrenkova M., Anele U.Y. (2020a). Ruminal fermentation kinetics of Moringa oleifera leaf and seed as protein feeds in dairy cow diets: in sacco degradability and protein and fiber fractions assessed by the CNCPS method. Agrofor. Syst. 94: 905–915. https://doi.org/10.1007/s10457-019-00456-7
- Ebeid H.M., Mengwei L., Kholif A.E., Hassan F. ul, Lijuan P., Xin L., Chengjian Y. (2020b). Moringa oleifera oil modulates rumen microflora to mediate in vitro fermentation kinetics and methanogenesis in total mix rations. Curr. Microbiol. 77: 1271–1282. https://doi.org/10.1007/s00284-020-01935-232130505
- Etim N.N., Enyenihi G.E., Williams M.E., Udo M.D., Offiong E.E.A. (2013). Haematological parameters: indicators of the physiological status of farm animals. Br. J. Sci. 10: 33–45.
- Fadiyimu A., Alokan J., Fajemisin A. (2010). Digestibility, nitrogen balance and haematological profile of West African dwarf sheep fed dietary levels of Moringa oleifera as supplement to Panicum maximum. J. Am. Sci. 6: 634–643.
- Ferret A., Plaixats J., Caja G., Gasa J., Prió P. (1999). Using markers to estimate apparent dry matter digestibility, faecal output and dry matter intake in dairy ewes fed Italian ryegrass hay or alfalfa hay. Small Rumin. Res. 33: 145–152. https://doi.org/10.1016/S0921-4488(99)00015-2
- Hosten A.O. (1990). BUN and Creatinine, in: Walker, H.K., Hall, W.D., Hurst, J.W. (Eds.), Clinical Methods: The History, Physical, and Laboratory Examinations. Butterworths, Boston, MA, pp. 874–878.
- Jones M., Jones G. (2012). Animal nutrition, 7th ed, IGCSE Biology. Pearson Education Limited, UK. https://doi.org/10.1017/cbo9780511862793.008
- Kholif A.E., Gouda G.A., Abu Elella A.A., Patra A.K. (2022). Moringa oleifera leaves silage and Chlorella vulgaris microalgae mixture in diets of Damascus goats: lactation performance, nutrient utilization, and ruminal fermentation. Animals 12: 1589. https://doi.org/10.3390/ani12121589921960735739926
- Kholif A.E., Gouda G.A., Anele U.Y., Galyean M.L. (2018a). Extract of Moringa oleifera leaves improves feed utilization of lactating Nubian goats. Small Rumin. Res. 158: 69–75. https://doi.org/10.1016/j.smallrumres.2017.10.014
- Kholif A.E., Gouda G.A., Galyean M.L., Anele U.Y., Morsy T.A. (2019). Extract of Moringa oleifera leaves increases milk production and enhances milk fatty acid profile of Nubian goats. Agrofor. Syst. 93: 1877–1886. https://doi.org/10.1007/s10457-018-0292-9
- Kholif A.E., Gouda G.A., Morsy T.A., Salem A.Z.M., Lopez S., Kholif A.M. (2015). Moringa oleifera leaf meal as a protein source in lactating goat’s diets: Feed intake, digestibility, ruminal fermentation, milk yield and composition, and its fatty acids profile. Small Rumin. Res. 129: 129–137. https://doi.org/10.1016/j.smallrumres.2015.05.007
- Kholif A.E., Gouda G.A., Olafadehan O.A., Abdo M.M. (2018b). Effects of replacement of Moringa oleifera for berseem clover in the diets of Nubian goats on feed utilisation, and milk yield, composition and fatty acid profile. Animal 12: 964–972. https://doi.org/10.1017/S175173111700233628988560
- Kholif A.E., Hassan A.A., El Ashry G.M., Bakr M.H., El-Zaiat H.M., Olafadehan O.A., Matloup O.H., Sallam S.M.A. (2021a). Phytogenic feed additives mixture enhances the lactational performance, feed utilization and ruminal fermentation of Friesian cows. Anim. Biotechnol. 32: 708–718. https://doi.org/10.1080/10495398.2020.174632232248772
- Kholif A.E., Matloup O.H., EL-Bltagy E.A., Olafadehan O.A., Sallam S.M.A., El-Zaiat H.M. (2021b). Humic substances in the diet of lactating cows enhanced feed utilization, altered ruminal fermentation, and improved milk yield and fatty acid profile. Livest. Sci. 253: 104699. https://doi.org/10.1016/j.livsci.2021.104699
- Kholif A.E., Morsy T.A., Gouda G.A., Anele U.Y., Galyean M.L. (2016). Effect of feeding diets with processed Moringa oleifera meal as protein source in lactating Anglo-Nubian goats. Anim. Feed Sci. Technol. 217: 45–55. https://doi.org/10.1016/j.anifeedsci.2016.04.012
- Kholif A.E., Olafadehan O.A. (2022). Dietary strategies to enrich milk with healthy fatty acids – A review. Ann. Anim. Sci. 22: 523–536. https://doi.org/10.2478/aoas-2021-0058
- Kholif A.E., Olafadehan O.A. (2021). Essential oils and phytogenic feed additives in ruminant diet: chemistry, ruminal microbiota and fermentation, feed utilization and productive performance. Phytochem. Rev. 20: 1087–1108. https://doi.org/10.1007/s11101-021-09739-3
- Makkar H.P.S. (2003). Quantification of Tannins in Tree and Shrub Foliage, Quantification of Tannins in Tree and Shrub Foliage. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-017-0273-7
- Meier B., Julkunen-Tiitto R., Tahvanainen J., Sticher O. (1988). Comparative high-performance liquid and gas-liquid chromatographic determination of phenolic glucosides in salicaceae species. J. Chromatogr. A 442: 175–186. https://doi.org/10.1016/S0021-9673(00)94467-4
- Mendieta-Araica B., Spörndly E., Reyes-Sánchez N., Spörndly R. (2011). Feeding Moringa oleifera fresh or ensiled to dairy cows-effects on milk yield and milk flavor. Trop. Anim. Health Prod. 43: 1039–1047. https://doi.org/10.1007/s11250-011-9803-721344294
- Morales S.G.D., Rosales R.B., Vergara D.M.B., Chirinda N., Arango J. (2021). Feeding strategies to increase nitrogen retention and improve rumen fermentation and rumen microbial population in beef steers fed with tropical forages. Sustainability 13(18), 10312. https://doi.org/10.3390/SU131810312
- Morsy T.A., Gouda G.A., Kholif A.E. (2022). In vitro fermentation and production of methane and carbon dioxide from rations containing Moringa oleifera leave silage as a replacement of soybean meal: in vitro assessment. Environ. Sci. Pollut. Res. In press. https://doi.org/10.1007/s11356-022-20622-2951274335570255
- Nickless G. (2009). How to interpret liver function tests. Pharmaceutical Journal 1, 363–366. https://doi.org/10.1211/PJ.2021.1.105975
- NRC (2007). Nutrient Requirements of Small Ruminants, Nutrient Requirements of Small Ruminants. National Academies Press, Washington, D.C. https://doi.org/10.17226/11654
- Olafadehan O.A. (2013). Feeding value of Pterocarpus erinaceus for growing goats. Anim. Feed Sci. Technol. 185: 1–8. https://doi.org/10.1016/j.anifeedsci.2013.05.014
- Olafadehan O.A. (2011). Changes in haematological and biochemical diagnostic parameters of Red Sokoto goats fed tannin-rich Pterocarpus erinaceus forage diets. Veterinarski Arhiv 81: 471–483.
- Olafadehan O.A., Adebayo O.F. (2016). Nutritional evaluation of ammoniated ensiled threshed sorghum top as a feed for goats. Trop. Anim. Health Prod. 48: 785–791. https://doi.org/10.1007/s11250-016-1027-426898693
- Olafadehan O.A., Njidda A.A., Okunade S.A., Adewumi M.K., Awosanmi K.J., Ijanmi T.O., Raymond A. (2016). Effects of feeding Ficus polita foliage-based complete rations with varying forage: Concentrate ratio on performance and ruminal fermentation in growing goats. Anim. Nutr. Feed Technol. 16: 373–382. https://doi.org/10.5958/0974-181X.2016.00033.0
- Olafadehan O.A., Okunade S.A. (2018). Fodder value of three browse forage species for growing goats. J. Saudi Soc. Agric. Sci. 17: 43–50. https://doi.org/10.1016/j.jssas.2016.01.001
- Olafadehan O.A., Okunade S.A., Njidda A.A., Kholif A.E., Kolo S.G., Alagbe J.O. (2020). Concentrate replacement with Daniellia oliveri foliage in goat diets. Trop. Anim. Health Prod. 52: 227–233. https://doi.org/10.1007/s11250-019-02002-031297686
- Sallam S., Kholif A.E., Kadoom M., Nour El-Din A., Attia M., Matloup O., Olafadehan O. (2021). Two levels of palmitic acid-enriched fat supplement affect lactational performance of Holstein cows and feed utilization of Barki sheep. Agric. Conspec. Sci. 86: 153–163.
- Su B., Chen X. (2020). Current status and potential of Moringa oleifera leaf as an alternative protein source for animal feeds. Front. Vet. Sci. 7: 53. https://doi.org/10.3389/fvets.2020.00053705428032175333
- Tajima K., Aminov R.I., Nagamine T., Matsui H., Nakamura M., Benno Y. (2001). Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol. 67: 2766–2774. https://doi.org/10.1128/AEM.67.6.2766-2774.20019293711375193
- Tyrrell H.F., Reid J.T. (1965). Prediction of the energy value of cow’s milk. J. Dairy Sci. 48: 1215–1223. https://doi.org/10.3168/jds.S0022-0302(65)88430-25843077
- Ulbricht T.L.V., Southgate D.A.T. (1991). Coronary heart disease: seven dietary factors. Lancet 338: 985–992. https://doi.org/10.1016/0140-6736(91)91846-M
- Van Soest P.J., Robertson J.B., Lewis B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-21660498
- Vanhatalo A., Varvikko T., Huhtanen P. (2003). Effects of various glucogenic sources on production and metabolic responses of dairy cows fed grass silage-based diets. J. Dairy Sci. 86: 3249–3259. https://doi.org/10.3168/jds.S0022-0302(03)73928-914594245
- Waghorn G.C., Ulyatt M.J., John A., Fisher M.T. (1987). The effect of condensed tannins on the site of digestion of amino acids and other nutrients in sheep fed on Lotus corniculatus L. Br. J. Nutr. 57: 115–126. https://doi.org/10.1079/BJN198700153801377
- Wanapat M., Totakul P., Viennasay B., Matra M. (2021). Sunnhemp (Crotalaria juncea, L.) silage can enrich rumen fermentation process, microbial protein synthesis, and nitrogen utilization efficiency in beef cattle crossbreds. Trop. Anim. Health Prod. 53: 187. https://doi.org/10.1007/s11250-021-02628-z33651183
- Yanza Y.R., Szumacher-Strabel M., Lechniak D., Ślusarczyk S., Kolodziejski P., Patra A.K., Váradyová Z., Lisiak D., Vazirigohar M., Cieslak A. (2022). Dietary Coleus amboinicus Lour. decreases ruminal methanogenesis and biohydrogenation, and improves meat quality and fatty acid composition in longissimus thoracis muscle of lambs. J. Anim. Sci. Biotechnol. 13: 5. https://doi.org/10.1186/s40104-021-00654-3876573335027089