Have a personal or library account? Click to login

Genetic structure of reconstituted native Carpathian goat breed based on information from microsatellite markers

Open Access
|Oct 2022

References

  1. Asroush F., Mirhoseini S. Z., Badbarin N., Seidavi A., Tufarelli V., Laudadio V., Dario C., Selvaggi M. (2018). Genetic characterization of Markhoz goat breed using microsatellite markers. Archives animal breeding, 61(4): 469–473. https://doi.org/10.5194/aab-61-469-2018.706538832175455
  2. Cañon J., Garcia D., Garcia-Atance M.A., Obexer -Ruff G., Lenstra J.A., Ajmone-Marsan P., Dunner S. and Econogene Consortium (2006). Geographical partitioning of goat diversity in Europe and the Middle East. Anim. Genet., 37: 327–334.10.1111/j.1365-2052.2006.01461.x
  3. Ceccobelli S., Lasagna E., Demir E., Rovelli G., Albertini E., Veronesi F., Sarti F. M., Rosellini D. (2020). Molecular Identification of the “Facciuta Della Valnerina” Local Goat Population Reared in the Umbria Region, Italy. Animals: an open access journal from MDPI, 10: 601. https://doi.org/10.3390/ani10040601722281732244771
  4. Cornale P., Renna M., Lussiana C., Bigi D., Chessa S., Mimosi A. (2014). The Grey Goat of Lanzo Valleys (Fiurinà): breed characteristics, genetic diversity, and quantitative-qualitative milk traits. Small Ruminant Research 116: 1–13. doi:10.1016/j.smallrumres.2013.10.006.
  5. Da Silva E. C., McManus C. M., de Paiva Guimarães M. P., Gouveia A. M., Facó O., Pimentel D. M., Caetano A. R., Paiva S. R. (2014). Validation of a microsatellite panel for parentage testing of locally adapted and commercial goats in Brazil. Genetics and molecular biology, 37(1): 54–60. https://doi.org/10.1590/s1415-47572014000100010.395832624688291
  6. Di R., Vahidi S.M., Ma Y.H., He X.H., Zhao Q.J., Han J.L., Guan W.J., Chu M.X., Sun W., Pu Y.P. (2011). Microsatellite analysis revealed genetic diversity and population structure among Chinese cashmere goats. Anim. Genet., 42(4): 428-31. doi: 10.1111/j.1365-2052.2010.02072.x.20497158
  7. Earl D.A., Von Holdt B.M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour, 4: 359–361. https://doi.org/10.1007/s12686-011-9548-7.
  8. Ernie Muneerah M.A., Md Tamrin N.A., Salisi M.S., Zulkifly S., Ghazali S.S.M., Temuli J.J., Rosali M.H., Nazari S., Wan Nik W.M.K., Mamat-Hamidi K. (2021). MicrosatelliteBased Genetic Characterization of the Indigenous Katjang Goat in Peninsular Malaysia. Animals, 11: 1328. https://doi.org/10.3390/ani11051328.814860134066910
  9. Evanno G., Regnaut S., Goudet J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14: 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x.15969739
  10. FAO (2004). Secondary guidelines for development of national farm animal genetic resources management plans for global management of cattle genetic resources using reference Microsatellites global projects for the maintenance of domestic animal genetic diversity (MoDaD); available at: https://www.fao.org/dad-is/html.
  11. FAO (2019). STATUS AND TRENDS OF ANIMAL GENETIC RESOURCES – 2018. CGRFA/WG-AnGR-10/18/Inf.3.https://www.fao.org/animal-genetics/breed-database/dad-is/.
  12. Garcia-Vallvé S., Palau J., Romeu A. (1999). Horizontal gene transfer in glycosyl hydrolases inferred from codon usage in Escherichia coli and Bacillus subtilis. Mol. Biol. Evol. 16, 1125–1134. https://doi.org/10.1093/OXFORDJOURNALS.MOLBEV.A026203.10486968
  13. Hoda A.1, Hyka G., Dunner S., Obexer-Ruff G. and Econogene Consortium (2011). Genetic diversity of Albanian goat breeds based on microsatellite markers. Arch. Zootec. 60 (231): 607-615. 2011.10.4321/S0004-05922011000300049
  14. Hossam Mahmoud A., Abul Farah M., Rady A., Mashai Alanazi K., Mohammed O., Amor N., Mohammed Alarjani K. (2020). Molecular characterization of goats from Saudi Arabia using microsatellite markers. Journal of King Saud University - Science, 32: 1681–1686, doi:10.1016/j.jksus.2020.01.001.
  15. International Society for Animal Genetics; https://www.isag.us/Docs/SmallRumGenGenom2019.pdf (date of access: 2022-01-07).
  16. Laoun A., Harkat S., Lafri M., Gaouar S., Belabdi I., Ciani E., De Groot M., Blanquet V., Leroy G., Rognon X., Da Silva A. (2020). Inference of Breed Structure in Farm Animals: Empirical Comparison between SNP and Microsatellite Performance. Genes, 11(1): 57. https://doi.org/10.3390/genes11010057.701656431947936
  17. Letunic I., Bork P., 2021. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49: 293–296. https://doi.org/10.1093/nar/gkab301.826515733885785
  18. Kalinowski S.T., Taper M.L., Marshall T.C. (2007). Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16: 1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x.17305863
  19. Kawęcka A., Pasternak M., Sikora J., Miksza-Cybulska A. (2021). The state of breeding and the characteristics of selected parameters of milk performance of goats in Poland in 2009–2018. Rocz. Nauk. Zoot., 48 (1): 55–66. (in Polish).
  20. Kopelman N.M., Mayzel J., Jakobsson M., Rosenberg N.A., Mayrose I. (2015). Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15: 1179–1191. https://doi.org/10.1111/1755-0998.12387.453433525684545
  21. Mastrangelo S., Tolone M., Sardina M.T., Di Gerlando R., Portolano B. (2013). Genetic characterization of the Mascaruna goat, a Sicilian autochthonous population, using molecular markers. African Journal of Biotechnology Vol. 12(24), pp. 3758-3767, 12 June, 2013 DOI: 10.5897/AJB2013.12401.
  22. Mekuriaw G., Gizaw S., Dessie T., Mwai O.A., Djikeng A., Tesfaye K. (2016). Review on Current Knowledge of Genetic Diversity of Domestic Goats (Capra hircus) Identified by Microsatellite Loci: How those Efforts are Strong to Support the Breeding Programs? J. Life Sci. Biomed. 6(2): 22–32.
  23. Peakall R., Smouse P.E. (2006). Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x.
  24. Peakall R., Smouse P.E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research - an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460346324522820204
  25. Pritchard J.K., Stephens M., Donnelly P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959.10.1093/genetics/155.2.945146109610835412
  26. Saitbekova N., Gaillard C., Obexer-Ruff G., Dolf G. (1999). Genetic diversity in Swiss goat breeds based on microsatellite analysis. Animal Genetics 30, 36–41.10.1046/j.1365-2052.1999.00429.x10050281
  27. Seilsuth S., Seo J., Kong H., Jeon G. (2016). Microsatellite Analysis of the Genetic Diversity and Population Structure in Dairy Goats in Thailand Anim Biosci. 29(3): 327-332. DOI: https://doi.org/10.5713/ajas.15.0270.481178226950862
  28. Serrano M., Calvo J.H., Martínez M. et al. (2009). Microsatellite based genetic diversity and population structure of the endangered Spanish Guadarrama goat breed. BMC Genet 10, 61. https://doi.org/10.1186/1471-2156-10-61.276194219785776
  29. Sikora J., Kawęcka A. (2017). Characterization of the current state of breeding and selected performance traits of Carpathian goats. Wiad. Zoot., 2: 77–82 (in Polish).
  30. Sikora J., Kawęcka A., Puchała M. (2020). Restitution forgotten goat breeds as an example of enriching farm animal biodiversity International Congress on Sheep and Goats–Farmers and Scientists create Future –15-16 October 2020, WCCB Bonn, Germany, www.genresj.org ISSN: 2708-3764. p.80.
  31. Siwek M., Knol E.F. (2010). Parental reconstruction in rural goat population with microsatellite markers. Italian Journal of Animal Science, 9: 3, DOI: 10.4081/ijas.2010.e50.
DOI: https://doi.org/10.2478/aoas-2022-0050 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1235 - 1244
Submitted on: Apr 21, 2022
Accepted on: Jun 13, 2022
Published on: Oct 29, 2022
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Aldona Kawęcka, Angelika Podbielska, Anna Miksza-Cybulska, Marta Pasternak, Jacek Sikora, Tomasz Szmatoła, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.