References
- Abbaszadeh A., Mozanzadeh M.T., Qasemi A., Oujifard A., Nafisi Bahabadi M. (2022). Effects of the addition of Calanopia elliptica, Artemia franciscana, and Brachionus rotundiformis in a nursery biofloc system on water quality, growth, gut morphology, health indices, and transcriptional response of immune and antioxidant related genes in Penaeus vannamei. Aquac. Int., 30: 653–676.10.1007/s10499-021-00823-1
- Abdel-Tawwab M., Khalil R.H., Nour A.M., Elkhayat B.K., Khalifa E., Abdel-Latif H.M.R. (2022). Effects of Bacillus subtilis-fermented rice bran on water quality, performance, antioxidants/oxidants, and immunity biomarkers of White leg shrimp (Litopenaeus vannamei) reared at different salinities with zero water exchange. J. Appl. Aquac., 34: 332–357.10.1080/10454438.2020.1844110
- Albuquerque L.F.G. (2019). Desempenho zootécnico e econômico do cultivo de Penaeus vannamei usando o sistema aquamimicry. Tese de doutorado. Universidade Federal do Ceará (UFC). 77 pp.
- Alonso-Rodriguez R., Páes-Osuna F. (2003). Nutrients, phytoplankton and harmful algal blooms in shrimp ponds: a review with special reference to the situation in the Gulf of California. Aquaculture, 219: 317–336.10.1016/S0044-8486(02)00509-4
- Anh P.T., Kroeze C., Bush S.R., Mol A.P.J. (2010). Water pollution by intensive brackish shrimp farming in southeast Vietnam: Causes and options for control. Agric. Water Manag., 97: 872–882.10.1016/j.agwat.2010.01.018
- Asaduzzaman M., Wahab M.A., Verdegem M.C.J., Huque S., Salam M.A., Azim M.E. (2008). C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture, 280: 117–123.10.1016/j.aquaculture.2008.04.019
- Avnimelech Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176: 227–235.10.1016/S0044-8486(99)00085-X
- Avnimelech Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264: 140–147.10.1016/j.aquaculture.2006.11.025
- Avnimelech Y. (2009). Biofloc Technology: A Practical Guide Book. World Aquaculture Society, Baton Rouge, Louisiana, USA. 182 pp.
- Balcázar J.L., Blas I.D., Ruiz-Zarzuela I., Cunningham D., Vendrell D., Múzquiz J.L. (2006). The role of probiotics in aquaculture. Vet. Microbiol., 114: 173–186.10.1016/j.vetmic.2006.01.009
- Bauer W.A., Prentice C.H., Tesser M.B., Wasilesky W. Jr., Poersch L.H.S. (2012). Substitution of fishmeal with microbial flocs meal and soy protein concentrations in diets from de pacific white shrimp Litopenaeus vannamei. Aquaculture, 342: 112–116.10.1016/j.aquaculture.2012.02.023
- Biesebeke R. (2018). Balancing microbial ecosystems within humans and animals to prevent medical conditions. J. Nutr. Food Res. Technol., 1: 40.10.30881/jnfrt.00009
- Biswas P.C., Sultana S., Kabiraj M., Sm S.H. (2019). Role of probiotics in aquaculture practice of Satkhira region of Bangladesh. Int. J. Fish. Aquat. Stud., 7: 174–181.
- Brito L.O., Chagas A.M., Silva E.P., Soares R.B., Severi W., Gálvez A.O. (2014). Water quality, Vibrio density and growth of Pacific white shrimp Litopenaeus vannamei (Boone) in an integrated biofloc system with red seaweed Gracilaria birdiae (Greville). Aquac Res., 47: 940–950.10.1111/are.12552
- Butto L.F., Haller D. (2016). Dysbiosis in intestinal inflammation: cause or consequence. Int. J. Med. Microbiol., 306: 302–309.10.1016/j.ijmm.2016.02.010
- Catalani K.M. (2020). Aquamimicry System: Technological alternative for intensive cultivation of marine shrimp Litopenaeus vannamei. A comparison with the Biofloc system (BFT). Thesis for master’s degree in aquaculture. Federal University of Rio Grande. Brazil, 58P. (https://ppgaquicultura.furg.br/en/dissertations-and-theses/dissertations/184-dissertacoes-de-2020/783-dissertacao-kim-catalani-2)
- Chakravarty S., Kumar S., Prakash S. (2018). Back to the basics: biomimicry in shrimp farming. Int. J. Curr. Microbiol. Appl. Sci., 7: 2172–2184.10.20546/ijcmas.2018.705.253
- Conceição L.E.C., Yúfera M., Makridis P., Morais S., Dinis M.T. (2010). Live feeds for early stages of fish rearing. Aquac Res., 41: 613–640.10.1111/j.1365-2109.2009.02242.x
- Crab R., Defoirdt T., Bossier P., Verstraete W. (2012). Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture, 356–357: 351–356.10.1016/j.aquaculture.2012.04.046
- Dawood M.A., Koshio S. (2020). Application of fermentation strategy in aquafeed for sustainable aquaculture. Rev. Aquacult., 12: 987–1002.10.1111/raq.12368
- Dawood M.A.O., Koshio S., Ishikawa M., Yokoyama S., El Basuini M.F., Hossain M.S., Nhu T.H., Dossou S., Moss A.S. (2016). Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major. Fish Shellfish Immunol., 49: 275–285.10.1016/j.fsi.2015.12.047
- Dawood M.A.O., Koshio S., Esteban M.A. (2018). Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Rev. Aquacult., 10: 950–974.10.1111/raq.12209
- De B.C., Meena D.K., Behera B.K., Das P., Das Mohapatra P.K., Sharma A.P. (2014). Probiotics in fish and shellfish culture: Immunomodulatory and Eco physiological responses. Fish Physiol. Biochem., 50: 1–10.
- De Melo F.P., Ferreira M.G.P., De Lima J.P.V., Correia E.D.S. (2015). Cultivo do camarão marinho com bioflocos sob diferentes níveis de proteína com e sem probiótico. Rev. Caatinga, 28: 202–210.10.1590/1983-21252015v28n422rc
- Deepak A.P., Vasava R.J., Elchelwar V.R., Tandel D.H., Vadher K.H., Shrivastava V., Prabhakar P. (2020). Aquamimicry: New an innovative apporoach for sustainable development of aquaculture. J. Entomol. Zool. Stud., 8: 1029–1031.
- Drillet G., Jørgensen N.O., Sørensen T.F., Ramløv H., Hansen B.W. (2006). Biochemical and technical observations supporting the use of copepods as live feed organisms in marine larviculture. Aquac Res., 37: 756–772.10.1111/j.1365-2109.2006.01489.x
- Drillet G., Frouël S., Sichlau M.H., Jepsen P.M., Højgaard J.K., Joarder A.K., Hansen B.W. (2011). Status and recommendations on marine copepod cultivation for use as live feed. Aquaculture, 315: 155–166.10.1016/j.aquaculture.2011.02.027
- El-Sayed A.M. (2021). Use of biofloc technology in shrimp aquaculture: a comprehensive review, with emphasis on the last decade. Rev. Aquacult., 13: 676–705.10.1111/raq.12494
- Emerenciano M., Ballester E.L.C., Cavalli R.O., Wasielesky W. (2012). Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquac Res., 43: 447–457.10.1111/j.1365-2109.2011.02848.x
- Esparza-Leal H.M., Cardozo A.P., Wasielesky W. (2015). Performance of Litopenaeus vannamei postlarvae reared in indoor nursery tanks at high stocking density in clear-water versus biofloc system. Aquac. Eng., 68: 28–34.10.1016/j.aquaeng.2015.07.004
- FAO (2020). The state of world fisheries and aquaculture, sustainability in action. Rome, 224 pp.
- Flores-Miranda C.M., Luna Gonzalez A., Cortes-Espinosa D.V., Cortes Jacinto E., Fierro-Coronado J.A., Alaves-Ruiz P., Hctor A.G.O., Ruth E.M. (2014). Bacterial fermentation of Lemna sp. as a potential Substitute of fish meal in shrimp diets. Afr. J. Microbiol. Res., 8: 516–526.10.5897/AJMR2014.6654
- Gaona C.A.P., Serra F.P., Furtado P., Poersch L.H., Wasielesky W. (2016). Effect of different total suspended solids concentrations on the growth performance of Litopenaeus vannamei in a BFT system. Aquac. Eng., 72–73: 65–69.10.1016/j.aquaeng.2016.03.004
- Ghosh S., Sinha A., Sahu C. (2007). Effect of probiotic on reproductive performance in female live bearing ornamental fish. Aquac Res., 38: 518–526.10.1111/j.1365-2109.2007.01696.x
- Gonçalves G. (2022). image of an experiment using a symbiotic system or aquamimicry at the Marine Aquaculture Station, Federal University of Rio Grande, Brazil. master’s thesis. The dissertation is still being written. March, 2022.
- Gonçalves-Soares D., Zanette J., Yunes J., Yepiz-Plascencia G., Bainy A.C.D. (2012). Expression and activity of glutathione S-transferases and catalase in the shrimp Litopenaeus vannamei inoculated with a toxic Microcystis aeruginosa strain. Mar. Environ. Res., 75: 54–61.10.1016/j.marenvres.2011.07.007
- Hari B., Kurup B.M., Varghese J.T., Schrama J.W., Verdegem M.C.J. (2004). Effects of carbohydrate addition on production in extensive shrimp culture systems. Aquaculture, 241: 179–194.10.1016/j.aquaculture.2004.07.002
- Hong K.J., Lee C.H., Kim S.W. (2004). Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Food, 7: 430–435.10.1089/jmf.2004.7.430
- Hou D., Huang Z., Zeng S., Liu J., Weng S., He J. (2018). Comparative analysis of the bacterial community compositions of the shrimp intestine, surrounding water and sediment. J. Appl. Microbiol., 125: 792–799.10.1111/jam.13919
- Huynhtg Y.L., Shiu T.P., Nguyen Q.P., Truong Q., Chen J., Liu C. (2017). Current applications, selection, and possible mechanisms of actions of synbiotics in improving the growth and health status in aquaculture: a review. Fish Shellfish Immunol., 64: 367–382.10.1016/j.fsi.2017.03.035
- Iber B.T., Kasan N.A. (2021). Recent advances in shrimp aquaculture wastewater management. Heliyon, 7: e08283.10.1016/j.heliyon.2021.e08283
- Jahangiri L., Esteban M.A. (2018). Administration of probiotics in the water in finfish aquaculture systems: A review. Fishes, 3: 33.10.3390/fishes3030033
- Jannathulla R., Dayal J.S., Vasanthakumar D., Ambasankar K., Muralidhar M. (2017). Effect of fermentation methods on amino acids, fiber fractions and anti-nutritional factors in different plant protein sources and essential amino acid index for Penaeus vannamei Boone, 1931. Indian J. Fish., 64: 40–47.10.21077/ijf.2017.64.2.60341-07
- Jannathulla R., Dayal J.S., Vasanthakumar D., Ambasankar K., Panigrahi A., Muralidhar M. (2019). Apparent digestibility coefficients of fungal fermented plant proteins in two different penaeid shrimps – A comparative study. Aquac. Res., 50: 1491–1500.10.1111/are.14024
- Jayaprakashvel M., Subramani R. (2019). Implications of quorum sensing and quorum quenching in aquaculture health management. In: Implication of quorum sensing and biofilm formation in medicine, Agriculture and Food Industry. Springer, Singapore, pp. 299–312.10.1007/978-981-32-9409-7_18
- Karlsen Ø., Van Der Meeren T., Rønnestad I., Mangor Jensen A., Galloway T.F., Kjørsvik E., Hamre K. (2015). Copepods enhance nutritional status, growth and development in Atlantic cod (Gadus morhua L.) larvae – Can we identify the underlying factors? Peer J., 3: e902–e902.10.7717/peerj.902
- Kawahigashi D. (2018). Resultados de producción utilizando sistemas simbióticos. Anais do Aqua Expo El Oro 2018.
- Khanjani M.H., Sharifinia M. (2020). Biofloc technology as a promising tool to improve aquaculture production. Rev. Aquacult., 12: 1836–1850.10.1111/raq.12412
- Khanjani M.H., Sharifinia M. (2021). Production of Nile tilapia Oreochromis niloticus reared in a limited water exchange system: The effect of different light levels. Aquaculture, 542: 736912.10.1016/j.aquaculture.2021.736912
- Khanjani M.H., Sharifinia M. (2022). Biofloc technology with addition molasses as carbon sources applied to Litopenaeus vannamei juvenile production under the effects of different C/N ratios. Aquac. Int., 30: 383–397.10.1007/s10499-021-00803-5
- Khanjani M.H., Sharifinia M., Hajirezaee S. (2020). Effects of different salinity levels on water quality, growth performance and body composition of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultured in a zero water exchange heterotrophic system. Ann. Anim. Sci., 20: 1471–1486.10.2478/aoas-2020-0036
- Khanjani M.H., Alizadeh M., Sharifinia M. (2021 a). Effects of different carbon sources on water quality, biofloc quality, and growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in a heterotrophic culture system. Aquac. Int., 29: 307–321.10.1007/s10499-020-00627-9
- Khanjani M.H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021 b). Biofloc system applied to Nile tilapia (Oreochromis niloticus) farming using different carbon sources: growth performance, carcass analysis, digestive and hepatic enzyme activity. Iran. J. Fish. Sci., 20: 490–513.
- Khanjani M.H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021 c). The effect of adding molasses in different times on performance of Nile tilapia (Oreochromis niloticus) raised in a low-salinity biofloc system. Ann. Anim. Sci., 21: 1435–1454.10.2478/aoas-2021-0011
- Khanjani M.H., Sharifinia M., Hajirezaee S. (2022 a). Recent progress towards the application of biofloc technology for tilapia farming. Aquaculture, 552: 738021.10.1016/j.aquaculture.2022.738021
- Khanjani M.H., Eslami J., Ghaedi G., Sourinejad I. (2022 b). The effects of different stocking densities on nursery performance of Banana shrimp (Fenneropenaeus merguiensis) reared under biofloc condition. Ann. Anim. Sci., DOI: 10.2478/aoas-2022–0027.10.2478/aoas-2022-0027
- Kim S., Pang Z., Seo H., Cho Y.R., Samocha T., Jang I.K. (2014). Effect of biofloc on growth and immune activity of Pacific white shrimp, Litopenaeus vannamei post larvae. Aquac Res., 45: 362–371.10.1111/are.12319
- Kumar V.S., Pandey P.K., Anand G.R. (2018). Biofloc improves water, effluent quality and growth parameters of Penaeus vannamei in an intensive culture system. J. Environ. Manage., 215: 206–215.10.1016/j.jenvman.2018.03.015
- Lara-Flores M. (2011). The use of probiotic in aquaculture an overview. Int. Res. J. Microbiol., 2: 471–478.
- Leu M.Y., Sune Y.H., Meng P.J. (2015). First results of larval rearing and development of the bluestriped angelfish Chaetodontoplus septentrionalis (Temminck and Schlegel) from hatching through juvenile stage with notes on its potential for aquaculture. Aquac Res., 46: 1087–1100.10.1111/are.12265
- Li J., Tan B., Mai K. (2009). Dietary probiotic Bacillus OJ and isomaltooligosaccharides influence the intestine microbial populations, immune responses and resistance to white spot syndrome virus in shrimp (Litopenaeus vannamei). Aquaculture, 291: 35–40.10.1016/j.aquaculture.2009.03.005
- Liñan-Vidriales M.A., Peña-Rodríguez A., Tovar-Ramírez D., Elizondo-González R., Diana R. Barajas-Sandoval D.R., Ponce-Gracía E.I., Rodríguez-Jaramillo C., Balcázar J.L., Quiroz-Guzmán E. (2021). Effect of rice bran fermented with Bacillus and Lysinibacillus species on dynamic microbial activity of Pacific white shrimp (Penaeus vannamei). Aquaculture, 531: 735958.10.1016/j.aquaculture.2020.735958
- Liu K.F., Chiu C.H., Shiu Y.L., Cheng W., Liu C.H. (2010). Effects of the probiotic, Bacillus subtilis E20, on the survival, development, stress tolerance, and immune status of white shrimp, Litopenaeus vannamei larvae. Fish Shellfish Immunol., 28: 837–844.10.1016/j.fsi.2010.01.012
- Martinez-Cordova L.R., Campana-Torres A., Martinez-Porchas M. (2011). Effect of supplying four copepod densities (Acartia Sp. and Calanus pacificus) on the productive response of Litopenaeus vannamei pregrown intensively at microcosm level. Ciencias Marinas, 37: 415–423.10.7773/cm.v37i4A.1870
- Martínez Cruz P., Ibáñez A.L., Monroy Hermosillo O.A., Ramírez Saad H.C. (2012). Use of probiotics in aquaculture. ISRN Microbial., ID 916845, 13 pp.10.5402/2012/916845367170123762761
- Merrifield D.L., Dimitroglou A., Foey A., Davies S.J., Baker R.T., Bøgwald J., Castex M., Ringø E. (2010). The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 302: 1–18.10.1016/j.aquaculture.2010.02.007
- Mulyasari Kurniawati F., Setiawati M. (2013). Cassava digestibility through chemical and biological treatment as feed for tilapia. Indones. Aquac. J., 12: 178−185.10.19027/jai.12.178-185
- Nathanailides C., Kolygas M., Choremi K., Mavraganis T., Gouva E., Vidalis K., Athanassopoulou F. (2021). Probiotics have the potential to significantly mitigate the environmental impact of freshwater fish farms. Fishes, 6: 76.10.3390/fishes6040076
- Nisar U., Peng D., Mu Y., Sun Y. (2022). A solution for sustainable utilization of aquaculture waste: A comprehensive review of biofloc technology and aquamimicry. Front. Nutr., https://doi.org/10.3389/fnut.2021.791738.10.3389/fnut.2021.791738879060435096936
- Panigrahi A., Otta S.K., Kumaraguru Vasagam K.P., Shyne Anand P.S., Biju I.F., Aravind R. (2019). Training manual on Biofloc technology for nursery and grow out aquaculture, CIBA TM series, 15: 172.
- Qiu X., Davis D.A. (2018). Evaluation of dried fermented biomass as a feed ingredient in plant-based practical diets for juvenile Pacific white shrimp Litopenaeus vannamei. Aquac. Nutr., 24: 383–391.10.1111/anu.12569
- Radhakrishnan D.K., Ali I.A., Schmidt B.V., John E.M., Sivanpillai S., Vasunambesan S.T. (2019). Improvement of nutritional quality of live feed for aquaculture: An overview. Aquac Res., 51: 1–17.10.1111/are.14357
- Razak D.L., Rashid N.Y., Jamaluddin A., Sharifudin S.A., Kahar A., Long K. (2017). Cosmeceutical potentials and bioactive compounds of rice bran fermented with single and mix culture of Aspergillus oryzae and Rhizopus oryzae. J. Saudi Soc. Agric. Sci., 16: 127–134.10.1016/j.jssas.2015.04.001
- Ren Z., Li A., Jiang J., Zhou L., Yu Z., Lu H., Xie H., Chen X., Shao L., Zhang R., Xu S., Zhang H., Cui G., Chen X., Sun R., Wen H., Lerut J.P., Kan Q., Li L., Zheng S. (2018). Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut, 68: 1014–1023.10.1136/gutjnl-2017-315084
- Romano N. (2017). Aqamimicry: A revolutionary concept for shrimp farming. The Global Aquaculture Advocate, pp. 1–6.
- Romano N., Kumar V. (2017). Vegetarian shrimp: pellet-free shrimp farming. World Aquaculture, 12: 36–39.
- Romano N., Dauda A.B., Ikhsan N., Karim M., Kamarudin M.S. (2018). Fermenting rice bran as a carbon source for biofloc technology improved the water quality, growth, feeding efficiencies, and biochemical composition of African catfish Clarias gariepinus juveniles. Aquac Res., 49: 3691–3701.10.1111/are.13837
- Santhanam P., Manickam N., Perumal P. (2020). Biofloc-copefloc: A novel technology towards sustained aquaculture. J. Indian Soc. Coast. Agric. Res., 38: 43–50.
- Satoh N., Takaya Y., Takeuchi T. (2009). The effect of docosahexaenoic and eicosapentaenoic acids in live food on the development of abnormal morphology in hatchery-reared brown sole Pseudopleuronectes herzensteini. Fish. Sci., 75: 1001–1006.10.1007/s12562-009-0125-x
- Shi C., He J., Yu J., Yu B., Huang Z., Mao X., Zheng P., Chen D. (2015). Solid state fermentation of rapeseed cake with Aspergillus niger for degrading glucosinolates and upgrading nutritional value. J. Anim. Sci. Biotechnol., 6: 4618.10.1186/s40104-015-0015-2
- Suprayudi A.M., Edriani G., Ekasari J. (2012). Evaluation of fermented product quality of various byproduct of local agroindustry: its influence on digestibility and performance of juvenile growth of common carp. Indones. Aquacu. J., 11: 1–10.10.19027/jai.11.1-10
- Taher S., Romano N., Arshad A., Ebrahimi M., Teh J.C., Ng W.K., Kumar V. (2017). Assessing the feasibility of dietary soybean meal replacement to the swimming crab, Portunus pelagicus, juveniles. Aquaculture, 469: 88–94.10.1016/j.aquaculture.2016.11.036
- Teixeira P. (2011). Fito plâncton e Protozooplâncton em viveiros de cultivo de camarão. Dissertação de mestrado. Oceanografia biológica. Rio Grande, RS, 54 pp.
- Van Nguyen N., Hoang L., Van Khanh T., Duy Hai P., Hung L.T. (2018). Utilization of fermented soybean meal for fishmeal substitution in diets of Pacific white shrimp (Litopenaeus vannamei). Aquac. Nutr., 24: 1092–1100.10.1111/anu.12648
- Vidal J.M.A., Pessôa M.N.D.C., Santos F.L.D., Mendes P.D.P., Mendes M.S. (2018). Probiotic potential of Bacillus cereus against Vibrio spp. in post-larvae shrimps. Rev. Caatinga, 31: 495–503.10.1590/1983-21252018v31n226rc
- Wilcox J.A., Tracy P.L., Marcus N.H. (2006). Improving live feeds: Effect of a mixed diet of copepod nauplii (Acartia tonsa) and rotifers on the survival and growth of first feeding larvae of the southern flounder, Paralichthys lethostigma. J. World Aquac. Soc., 37: 113–120.10.1111/j.1749-7345.2006.00014.x
- Xiong J., Dai W., Qi Q., Zhu J., Yang W., Li C. (2018). Response of host-bacterial colonization in shrimp to developmental stage, environment and disease. Microb. Ecol., 27: 3686–3699.10.1111/mec.14822
- Xiong J., Xuan L., Yu W., Zhu J., Qiu Q., Chen J. (2019). Spatiotemporal successions of shrimp gut microbial colonization: high consistency despite distinct species pool. Environ. Microbiol., 21: 1383–1394.10.1111/1462-2920.14578
- Xiong J., Li X., Yan M., Lu J., Chen J. (2020). Comparable ecological processes govern the temporal succession of gut bacteria and micro eukaryotes as shrimp aged. Microb. Ecol., 80: 935–945.10.1007/s00248-020-01533-6
- Zeng S., Khoruamkid S., Kongpakdee W., Wei D., Yu L., Wang H., Deng Z., Weng S., Huang Z., He J., Satapornvanit K. (2020). Dissimilarity of microbial diversity of pond water, shrimp intestine and sediment in Aquamimicry system. AMB Express, 10: 1–11.10.1186/s13568-020-01119-y
- Zubaidah E., Nurcholis M., Wulan S.N., Kusuma A. (2012). Comparative study on synbiotic effect of fermented rice bran by probiotic lactic acid bacteria Lactobacillus casei and newly isolated Lactobacillus plantarum B2 in wistar rats. APCBEE Procedia, 2: 170–177.10.1016/j.apcbee.2012.06.031