Have a personal or library account? Click to login

Aquamimicry system: a sutiable strategy for shrimp aquaculture – a review

Open Access
|Oct 2022

References

  1. Abbaszadeh A., Mozanzadeh M.T., Qasemi A., Oujifard A., Nafisi Bahabadi M. (2022). Effects of the addition of Calanopia elliptica, Artemia franciscana, and Brachionus rotundiformis in a nursery biofloc system on water quality, growth, gut morphology, health indices, and transcriptional response of immune and antioxidant related genes in Penaeus vannamei. Aquac. Int., 30: 653–676.10.1007/s10499-021-00823-1
  2. Abdel-Tawwab M., Khalil R.H., Nour A.M., Elkhayat B.K., Khalifa E., Abdel-Latif H.M.R. (2022). Effects of Bacillus subtilis-fermented rice bran on water quality, performance, antioxidants/oxidants, and immunity biomarkers of White leg shrimp (Litopenaeus vannamei) reared at different salinities with zero water exchange. J. Appl. Aquac., 34: 332–357.10.1080/10454438.2020.1844110
  3. Albuquerque L.F.G. (2019). Desempenho zootécnico e econômico do cultivo de Penaeus vannamei usando o sistema aquamimicry. Tese de doutorado. Universidade Federal do Ceará (UFC). 77 pp.
  4. Alonso-Rodriguez R., Páes-Osuna F. (2003). Nutrients, phytoplankton and harmful algal blooms in shrimp ponds: a review with special reference to the situation in the Gulf of California. Aquaculture, 219: 317–336.10.1016/S0044-8486(02)00509-4
  5. Anh P.T., Kroeze C., Bush S.R., Mol A.P.J. (2010). Water pollution by intensive brackish shrimp farming in southeast Vietnam: Causes and options for control. Agric. Water Manag., 97: 872–882.10.1016/j.agwat.2010.01.018
  6. Asaduzzaman M., Wahab M.A., Verdegem M.C.J., Huque S., Salam M.A., Azim M.E. (2008). C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture, 280: 117–123.10.1016/j.aquaculture.2008.04.019
  7. Avnimelech Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176: 227–235.10.1016/S0044-8486(99)00085-X
  8. Avnimelech Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264: 140–147.10.1016/j.aquaculture.2006.11.025
  9. Avnimelech Y. (2009). Biofloc Technology: A Practical Guide Book. World Aquaculture Society, Baton Rouge, Louisiana, USA. 182 pp.
  10. Balcázar J.L., Blas I.D., Ruiz-Zarzuela I., Cunningham D., Vendrell D., Múzquiz J.L. (2006). The role of probiotics in aquaculture. Vet. Microbiol., 114: 173–186.10.1016/j.vetmic.2006.01.009
  11. Bauer W.A., Prentice C.H., Tesser M.B., Wasilesky W. Jr., Poersch L.H.S. (2012). Substitution of fishmeal with microbial flocs meal and soy protein concentrations in diets from de pacific white shrimp Litopenaeus vannamei. Aquaculture, 342: 112–116.10.1016/j.aquaculture.2012.02.023
  12. Biesebeke R. (2018). Balancing microbial ecosystems within humans and animals to prevent medical conditions. J. Nutr. Food Res. Technol., 1: 40.10.30881/jnfrt.00009
  13. Biswas P.C., Sultana S., Kabiraj M., Sm S.H. (2019). Role of probiotics in aquaculture practice of Satkhira region of Bangladesh. Int. J. Fish. Aquat. Stud., 7: 174–181.
  14. Brito L.O., Chagas A.M., Silva E.P., Soares R.B., Severi W., Gálvez A.O. (2014). Water quality, Vibrio density and growth of Pacific white shrimp Litopenaeus vannamei (Boone) in an integrated biofloc system with red seaweed Gracilaria birdiae (Greville). Aquac Res., 47: 940–950.10.1111/are.12552
  15. Butto L.F., Haller D. (2016). Dysbiosis in intestinal inflammation: cause or consequence. Int. J. Med. Microbiol., 306: 302–309.10.1016/j.ijmm.2016.02.010
  16. Catalani K.M. (2020). Aquamimicry System: Technological alternative for intensive cultivation of marine shrimp Litopenaeus vannamei. A comparison with the Biofloc system (BFT). Thesis for master’s degree in aquaculture. Federal University of Rio Grande. Brazil, 58P. (https://ppgaquicultura.furg.br/en/dissertations-and-theses/dissertations/184-dissertacoes-de-2020/783-dissertacao-kim-catalani-2)
  17. Chakravarty S., Kumar S., Prakash S. (2018). Back to the basics: biomimicry in shrimp farming. Int. J. Curr. Microbiol. Appl. Sci., 7: 2172–2184.10.20546/ijcmas.2018.705.253
  18. Conceição L.E.C., Yúfera M., Makridis P., Morais S., Dinis M.T. (2010). Live feeds for early stages of fish rearing. Aquac Res., 41: 613–640.10.1111/j.1365-2109.2009.02242.x
  19. Crab R., Defoirdt T., Bossier P., Verstraete W. (2012). Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture, 356–357: 351–356.10.1016/j.aquaculture.2012.04.046
  20. Dawood M.A., Koshio S. (2020). Application of fermentation strategy in aquafeed for sustainable aquaculture. Rev. Aquacult., 12: 987–1002.10.1111/raq.12368
  21. Dawood M.A.O., Koshio S., Ishikawa M., Yokoyama S., El Basuini M.F., Hossain M.S., Nhu T.H., Dossou S., Moss A.S. (2016). Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major. Fish Shellfish Immunol., 49: 275–285.10.1016/j.fsi.2015.12.047
  22. Dawood M.A.O., Koshio S., Esteban M.A. (2018). Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Rev. Aquacult., 10: 950–974.10.1111/raq.12209
  23. De B.C., Meena D.K., Behera B.K., Das P., Das Mohapatra P.K., Sharma A.P. (2014). Probiotics in fish and shellfish culture: Immunomodulatory and Eco physiological responses. Fish Physiol. Biochem., 50: 1–10.
  24. De Melo F.P., Ferreira M.G.P., De Lima J.P.V., Correia E.D.S. (2015). Cultivo do camarão marinho com bioflocos sob diferentes níveis de proteína com e sem probiótico. Rev. Caatinga, 28: 202–210.10.1590/1983-21252015v28n422rc
  25. Deepak A.P., Vasava R.J., Elchelwar V.R., Tandel D.H., Vadher K.H., Shrivastava V., Prabhakar P. (2020). Aquamimicry: New an innovative apporoach for sustainable development of aquaculture. J. Entomol. Zool. Stud., 8: 1029–1031.
  26. Drillet G., Jørgensen N.O., Sørensen T.F., Ramløv H., Hansen B.W. (2006). Biochemical and technical observations supporting the use of copepods as live feed organisms in marine larviculture. Aquac Res., 37: 756–772.10.1111/j.1365-2109.2006.01489.x
  27. Drillet G., Frouël S., Sichlau M.H., Jepsen P.M., Højgaard J.K., Joarder A.K., Hansen B.W. (2011). Status and recommendations on marine copepod cultivation for use as live feed. Aquaculture, 315: 155–166.10.1016/j.aquaculture.2011.02.027
  28. El-Sayed A.M. (2021). Use of biofloc technology in shrimp aquaculture: a comprehensive review, with emphasis on the last decade. Rev. Aquacult., 13: 676–705.10.1111/raq.12494
  29. Emerenciano M., Ballester E.L.C., Cavalli R.O., Wasielesky W. (2012). Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquac Res., 43: 447–457.10.1111/j.1365-2109.2011.02848.x
  30. Esparza-Leal H.M., Cardozo A.P., Wasielesky W. (2015). Performance of Litopenaeus vannamei postlarvae reared in indoor nursery tanks at high stocking density in clear-water versus biofloc system. Aquac. Eng., 68: 28–34.10.1016/j.aquaeng.2015.07.004
  31. FAO (2020). The state of world fisheries and aquaculture, sustainability in action. Rome, 224 pp.
  32. Flores-Miranda C.M., Luna Gonzalez A., Cortes-Espinosa D.V., Cortes Jacinto E., Fierro-Coronado J.A., Alaves-Ruiz P., Hctor A.G.O., Ruth E.M. (2014). Bacterial fermentation of Lemna sp. as a potential Substitute of fish meal in shrimp diets. Afr. J. Microbiol. Res., 8: 516–526.10.5897/AJMR2014.6654
  33. Gaona C.A.P., Serra F.P., Furtado P., Poersch L.H., Wasielesky W. (2016). Effect of different total suspended solids concentrations on the growth performance of Litopenaeus vannamei in a BFT system. Aquac. Eng., 72–73: 65–69.10.1016/j.aquaeng.2016.03.004
  34. Ghosh S., Sinha A., Sahu C. (2007). Effect of probiotic on reproductive performance in female live bearing ornamental fish. Aquac Res., 38: 518–526.10.1111/j.1365-2109.2007.01696.x
  35. Gonçalves G. (2022). image of an experiment using a symbiotic system or aquamimicry at the Marine Aquaculture Station, Federal University of Rio Grande, Brazil. master’s thesis. The dissertation is still being written. March, 2022.
  36. Gonçalves-Soares D., Zanette J., Yunes J., Yepiz-Plascencia G., Bainy A.C.D. (2012). Expression and activity of glutathione S-transferases and catalase in the shrimp Litopenaeus vannamei inoculated with a toxic Microcystis aeruginosa strain. Mar. Environ. Res., 75: 54–61.10.1016/j.marenvres.2011.07.007
  37. Hari B., Kurup B.M., Varghese J.T., Schrama J.W., Verdegem M.C.J. (2004). Effects of carbohydrate addition on production in extensive shrimp culture systems. Aquaculture, 241: 179–194.10.1016/j.aquaculture.2004.07.002
  38. Hong K.J., Lee C.H., Kim S.W. (2004). Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Food, 7: 430–435.10.1089/jmf.2004.7.430
  39. Hou D., Huang Z., Zeng S., Liu J., Weng S., He J. (2018). Comparative analysis of the bacterial community compositions of the shrimp intestine, surrounding water and sediment. J. Appl. Microbiol., 125: 792–799.10.1111/jam.13919
  40. Huynhtg Y.L., Shiu T.P., Nguyen Q.P., Truong Q., Chen J., Liu C. (2017). Current applications, selection, and possible mechanisms of actions of synbiotics in improving the growth and health status in aquaculture: a review. Fish Shellfish Immunol., 64: 367–382.10.1016/j.fsi.2017.03.035
  41. Iber B.T., Kasan N.A. (2021). Recent advances in shrimp aquaculture wastewater management. Heliyon, 7: e08283.10.1016/j.heliyon.2021.e08283
  42. Jahangiri L., Esteban M.A. (2018). Administration of probiotics in the water in finfish aquaculture systems: A review. Fishes, 3: 33.10.3390/fishes3030033
  43. Jannathulla R., Dayal J.S., Vasanthakumar D., Ambasankar K., Muralidhar M. (2017). Effect of fermentation methods on amino acids, fiber fractions and anti-nutritional factors in different plant protein sources and essential amino acid index for Penaeus vannamei Boone, 1931. Indian J. Fish., 64: 40–47.10.21077/ijf.2017.64.2.60341-07
  44. Jannathulla R., Dayal J.S., Vasanthakumar D., Ambasankar K., Panigrahi A., Muralidhar M. (2019). Apparent digestibility coefficients of fungal fermented plant proteins in two different penaeid shrimps – A comparative study. Aquac. Res., 50: 1491–1500.10.1111/are.14024
  45. Jayaprakashvel M., Subramani R. (2019). Implications of quorum sensing and quorum quenching in aquaculture health management. In: Implication of quorum sensing and biofilm formation in medicine, Agriculture and Food Industry. Springer, Singapore, pp. 299–312.10.1007/978-981-32-9409-7_18
  46. Karlsen Ø., Van Der Meeren T., Rønnestad I., Mangor Jensen A., Galloway T.F., Kjørsvik E., Hamre K. (2015). Copepods enhance nutritional status, growth and development in Atlantic cod (Gadus morhua L.) larvae – Can we identify the underlying factors? Peer J., 3: e902–e902.10.7717/peerj.902
  47. Kawahigashi D. (2018). Resultados de producción utilizando sistemas simbióticos. Anais do Aqua Expo El Oro 2018.
  48. Khanjani M.H., Sharifinia M. (2020). Biofloc technology as a promising tool to improve aquaculture production. Rev. Aquacult., 12: 1836–1850.10.1111/raq.12412
  49. Khanjani M.H., Sharifinia M. (2021). Production of Nile tilapia Oreochromis niloticus reared in a limited water exchange system: The effect of different light levels. Aquaculture, 542: 736912.10.1016/j.aquaculture.2021.736912
  50. Khanjani M.H., Sharifinia M. (2022). Biofloc technology with addition molasses as carbon sources applied to Litopenaeus vannamei juvenile production under the effects of different C/N ratios. Aquac. Int., 30: 383–397.10.1007/s10499-021-00803-5
  51. Khanjani M.H., Sharifinia M., Hajirezaee S. (2020). Effects of different salinity levels on water quality, growth performance and body composition of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultured in a zero water exchange heterotrophic system. Ann. Anim. Sci., 20: 1471–1486.10.2478/aoas-2020-0036
  52. Khanjani M.H., Alizadeh M., Sharifinia M. (2021 a). Effects of different carbon sources on water quality, biofloc quality, and growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in a heterotrophic culture system. Aquac. Int., 29: 307–321.10.1007/s10499-020-00627-9
  53. Khanjani M.H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021 b). Biofloc system applied to Nile tilapia (Oreochromis niloticus) farming using different carbon sources: growth performance, carcass analysis, digestive and hepatic enzyme activity. Iran. J. Fish. Sci., 20: 490–513.
  54. Khanjani M.H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021 c). The effect of adding molasses in different times on performance of Nile tilapia (Oreochromis niloticus) raised in a low-salinity biofloc system. Ann. Anim. Sci., 21: 1435–1454.10.2478/aoas-2021-0011
  55. Khanjani M.H., Sharifinia M., Hajirezaee S. (2022 a). Recent progress towards the application of biofloc technology for tilapia farming. Aquaculture, 552: 738021.10.1016/j.aquaculture.2022.738021
  56. Khanjani M.H., Eslami J., Ghaedi G., Sourinejad I. (2022 b). The effects of different stocking densities on nursery performance of Banana shrimp (Fenneropenaeus merguiensis) reared under biofloc condition. Ann. Anim. Sci., DOI: 10.2478/aoas-2022–0027.10.2478/aoas-2022-0027
  57. Kim S., Pang Z., Seo H., Cho Y.R., Samocha T., Jang I.K. (2014). Effect of biofloc on growth and immune activity of Pacific white shrimp, Litopenaeus vannamei post larvae. Aquac Res., 45: 362–371.10.1111/are.12319
  58. Kumar V.S., Pandey P.K., Anand G.R. (2018). Biofloc improves water, effluent quality and growth parameters of Penaeus vannamei in an intensive culture system. J. Environ. Manage., 215: 206–215.10.1016/j.jenvman.2018.03.015
  59. Lara-Flores M. (2011). The use of probiotic in aquaculture an overview. Int. Res. J. Microbiol., 2: 471–478.
  60. Leu M.Y., Sune Y.H., Meng P.J. (2015). First results of larval rearing and development of the bluestriped angelfish Chaetodontoplus septentrionalis (Temminck and Schlegel) from hatching through juvenile stage with notes on its potential for aquaculture. Aquac Res., 46: 1087–1100.10.1111/are.12265
  61. Li J., Tan B., Mai K. (2009). Dietary probiotic Bacillus OJ and isomaltooligosaccharides influence the intestine microbial populations, immune responses and resistance to white spot syndrome virus in shrimp (Litopenaeus vannamei). Aquaculture, 291: 35–40.10.1016/j.aquaculture.2009.03.005
  62. Liñan-Vidriales M.A., Peña-Rodríguez A., Tovar-Ramírez D., Elizondo-González R., Diana R. Barajas-Sandoval D.R., Ponce-Gracía E.I., Rodríguez-Jaramillo C., Balcázar J.L., Quiroz-Guzmán E. (2021). Effect of rice bran fermented with Bacillus and Lysinibacillus species on dynamic microbial activity of Pacific white shrimp (Penaeus vannamei). Aquaculture, 531: 735958.10.1016/j.aquaculture.2020.735958
  63. Liu K.F., Chiu C.H., Shiu Y.L., Cheng W., Liu C.H. (2010). Effects of the probiotic, Bacillus subtilis E20, on the survival, development, stress tolerance, and immune status of white shrimp, Litopenaeus vannamei larvae. Fish Shellfish Immunol., 28: 837–844.10.1016/j.fsi.2010.01.012
  64. Martinez-Cordova L.R., Campana-Torres A., Martinez-Porchas M. (2011). Effect of supplying four copepod densities (Acartia Sp. and Calanus pacificus) on the productive response of Litopenaeus vannamei pregrown intensively at microcosm level. Ciencias Marinas, 37: 415–423.10.7773/cm.v37i4A.1870
  65. Martínez Cruz P., Ibáñez A.L., Monroy Hermosillo O.A., Ramírez Saad H.C. (2012). Use of probiotics in aquaculture. ISRN Microbial., ID 916845, 13 pp.10.5402/2012/916845367170123762761
  66. Merrifield D.L., Dimitroglou A., Foey A., Davies S.J., Baker R.T., Bøgwald J., Castex M., Ringø E. (2010). The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 302: 1–18.10.1016/j.aquaculture.2010.02.007
  67. Mulyasari Kurniawati F., Setiawati M. (2013). Cassava digestibility through chemical and biological treatment as feed for tilapia. Indones. Aquac. J., 12: 178−185.10.19027/jai.12.178-185
  68. Nathanailides C., Kolygas M., Choremi K., Mavraganis T., Gouva E., Vidalis K., Athanassopoulou F. (2021). Probiotics have the potential to significantly mitigate the environmental impact of freshwater fish farms. Fishes, 6: 76.10.3390/fishes6040076
  69. Nisar U., Peng D., Mu Y., Sun Y. (2022). A solution for sustainable utilization of aquaculture waste: A comprehensive review of biofloc technology and aquamimicry. Front. Nutr., https://doi.org/10.3389/fnut.2021.791738.10.3389/fnut.2021.791738879060435096936
  70. Panigrahi A., Otta S.K., Kumaraguru Vasagam K.P., Shyne Anand P.S., Biju I.F., Aravind R. (2019). Training manual on Biofloc technology for nursery and grow out aquaculture, CIBA TM series, 15: 172.
  71. Qiu X., Davis D.A. (2018). Evaluation of dried fermented biomass as a feed ingredient in plant-based practical diets for juvenile Pacific white shrimp Litopenaeus vannamei. Aquac. Nutr., 24: 383–391.10.1111/anu.12569
  72. Radhakrishnan D.K., Ali I.A., Schmidt B.V., John E.M., Sivanpillai S., Vasunambesan S.T. (2019). Improvement of nutritional quality of live feed for aquaculture: An overview. Aquac Res., 51: 1–17.10.1111/are.14357
  73. Razak D.L., Rashid N.Y., Jamaluddin A., Sharifudin S.A., Kahar A., Long K. (2017). Cosmeceutical potentials and bioactive compounds of rice bran fermented with single and mix culture of Aspergillus oryzae and Rhizopus oryzae. J. Saudi Soc. Agric. Sci., 16: 127–134.10.1016/j.jssas.2015.04.001
  74. Ren Z., Li A., Jiang J., Zhou L., Yu Z., Lu H., Xie H., Chen X., Shao L., Zhang R., Xu S., Zhang H., Cui G., Chen X., Sun R., Wen H., Lerut J.P., Kan Q., Li L., Zheng S. (2018). Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut, 68: 1014–1023.10.1136/gutjnl-2017-315084
  75. Romano N. (2017). Aqamimicry: A revolutionary concept for shrimp farming. The Global Aquaculture Advocate, pp. 1–6.
  76. Romano N., Kumar V. (2017). Vegetarian shrimp: pellet-free shrimp farming. World Aquaculture, 12: 36–39.
  77. Romano N., Dauda A.B., Ikhsan N., Karim M., Kamarudin M.S. (2018). Fermenting rice bran as a carbon source for biofloc technology improved the water quality, growth, feeding efficiencies, and biochemical composition of African catfish Clarias gariepinus juveniles. Aquac Res., 49: 3691–3701.10.1111/are.13837
  78. Santhanam P., Manickam N., Perumal P. (2020). Biofloc-copefloc: A novel technology towards sustained aquaculture. J. Indian Soc. Coast. Agric. Res., 38: 43–50.
  79. Satoh N., Takaya Y., Takeuchi T. (2009). The effect of docosahexaenoic and eicosapentaenoic acids in live food on the development of abnormal morphology in hatchery-reared brown sole Pseudopleuronectes herzensteini. Fish. Sci., 75: 1001–1006.10.1007/s12562-009-0125-x
  80. Shi C., He J., Yu J., Yu B., Huang Z., Mao X., Zheng P., Chen D. (2015). Solid state fermentation of rapeseed cake with Aspergillus niger for degrading glucosinolates and upgrading nutritional value. J. Anim. Sci. Biotechnol., 6: 4618.10.1186/s40104-015-0015-2
  81. Suprayudi A.M., Edriani G., Ekasari J. (2012). Evaluation of fermented product quality of various byproduct of local agroindustry: its influence on digestibility and performance of juvenile growth of common carp. Indones. Aquacu. J., 11: 1–10.10.19027/jai.11.1-10
  82. Taher S., Romano N., Arshad A., Ebrahimi M., Teh J.C., Ng W.K., Kumar V. (2017). Assessing the feasibility of dietary soybean meal replacement to the swimming crab, Portunus pelagicus, juveniles. Aquaculture, 469: 88–94.10.1016/j.aquaculture.2016.11.036
  83. Teixeira P. (2011). Fito plâncton e Protozooplâncton em viveiros de cultivo de camarão. Dissertação de mestrado. Oceanografia biológica. Rio Grande, RS, 54 pp.
  84. Van Nguyen N., Hoang L., Van Khanh T., Duy Hai P., Hung L.T. (2018). Utilization of fermented soybean meal for fishmeal substitution in diets of Pacific white shrimp (Litopenaeus vannamei). Aquac. Nutr., 24: 1092–1100.10.1111/anu.12648
  85. Vidal J.M.A., Pessôa M.N.D.C., Santos F.L.D., Mendes P.D.P., Mendes M.S. (2018). Probiotic potential of Bacillus cereus against Vibrio spp. in post-larvae shrimps. Rev. Caatinga, 31: 495–503.10.1590/1983-21252018v31n226rc
  86. Wilcox J.A., Tracy P.L., Marcus N.H. (2006). Improving live feeds: Effect of a mixed diet of copepod nauplii (Acartia tonsa) and rotifers on the survival and growth of first feeding larvae of the southern flounder, Paralichthys lethostigma. J. World Aquac. Soc., 37: 113–120.10.1111/j.1749-7345.2006.00014.x
  87. Xiong J., Dai W., Qi Q., Zhu J., Yang W., Li C. (2018). Response of host-bacterial colonization in shrimp to developmental stage, environment and disease. Microb. Ecol., 27: 3686–3699.10.1111/mec.14822
  88. Xiong J., Xuan L., Yu W., Zhu J., Qiu Q., Chen J. (2019). Spatiotemporal successions of shrimp gut microbial colonization: high consistency despite distinct species pool. Environ. Microbiol., 21: 1383–1394.10.1111/1462-2920.14578
  89. Xiong J., Li X., Yan M., Lu J., Chen J. (2020). Comparable ecological processes govern the temporal succession of gut bacteria and micro eukaryotes as shrimp aged. Microb. Ecol., 80: 935–945.10.1007/s00248-020-01533-6
  90. Zeng S., Khoruamkid S., Kongpakdee W., Wei D., Yu L., Wang H., Deng Z., Weng S., Huang Z., He J., Satapornvanit K. (2020). Dissimilarity of microbial diversity of pond water, shrimp intestine and sediment in Aquamimicry system. AMB Express, 10: 1–11.10.1186/s13568-020-01119-y
  91. Zubaidah E., Nurcholis M., Wulan S.N., Kusuma A. (2012). Comparative study on synbiotic effect of fermented rice bran by probiotic lactic acid bacteria Lactobacillus casei and newly isolated Lactobacillus plantarum B2 in wistar rats. APCBEE Procedia, 2: 170–177.10.1016/j.apcbee.2012.06.031
DOI: https://doi.org/10.2478/aoas-2022-0044 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1201 - 1210
Submitted on: Mar 27, 2022
Accepted on: May 18, 2022
Published on: Oct 29, 2022
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Mohammad Hossein Khanjani, Mansour Torfi Mozanzadeh, Geraldo Kipper Fóes, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.