References
- Abraham E.M., Ganopoulos I., Madesis P., Mavromatis A., Mylona P., Nianiou-Obeidat I., Parissi Z., Polidoros A., Tani E., Vlachostergios D. (2019). The use of lupin as a source of protein in animal feeding: Genomic tools and breeding approaches. Int. J. Mol. Sci., 20: 851.10.3390/ijms20040851
- Adedokun S.A, Lilburn M.S., Parsons C.M., Adeola O., Applegate T.J. (2007). Endogenous amino acid flow in broiler chicks is affected by the age of birds and method of estimation. Poultry Sci., 86: 2590–2597.10.3382/ps.2007-00096
- Adedokun S.A., Adeala O., Parsons C.M., Lilburn M.S., Applegate T.J. (2011). Factors affecting endogenous amino acid flow in chickens and the need for consistency in methodology. Poultry Sci., 90: 1737–1748.10.3382/ps.2010-01245
- Alloui O., Smulikowska S., Chibowska M., Pastuszewska B. (1994). The nutritive value of lupin seeds (L. luteus, L. angustifolius and L. albus) for broiler chickens as affected by variety and enzyme supplementation. J. Anim. Feed Sci., 3: 215–227.10.22358/jafs/69836/1994
- Angel C.R., Saylor W.S., Vieira L., Ward N. (2011). Effects of a monocomponent protease on performance and protein utilization in 7- to 22-day-old broiler chickens. Poultry Sci., 90: 2281–2286.10.3382/ps.2011-01482
- Angkanaporn K., Choct M., Bryden W.L., Annison E.F., Annison G. (1994). Effects of wheat pentosans on endogenous amino acid losses in chickens. J. Sci. Food Agric., 66: 399–404.10.1002/jsfa.2740660319
- AOAC (2000). Official Methods of Analysis of AOAC International. 17th Edition. Association of Official Analytical Chemists, Gaithersburg, USA.
- Barekatain M.R., Antipatis C., Choct M., Iji P.A. (2013). Interaction between protease and xylanase in broiler chicken diets containing sorghum distillers’ dried grains with solubles. Anim. Feed Sci. Technol., 182: 71–81.10.1016/j.anifeedsci.2013.04.002
- Barua M., Abdollahi M.R., Zaefarian F., Wester T.J., Girish C.K., Chrystal P.V., Ravindran V. (2021 a). Basal ileal endogenous amino acid flow in broiler chickens as influenced by age. Poultry Sci., 100: 101269.10.1016/j.psj.2021.101269825522834198102
- Barua M., Abdollahi M.R., Zaefarian F., Wester T.J., Girish C.K., Chrystal P.V., Ravindran V. (2021 b). Influence of age on the standardized ileal amino acid digestibility of corn and barley in broilers. Animals, 11: 3575.10.3390/ani11123575869795434944350
- Blok M.C., Dekker R.A. (2017). Table: Standardized ileal digestibility of amino acids in feedstuffs for poultry. CVB (Dutch Central Bureau for Livestock Feeding) Documentation Report, no. 61: 1–97.10.18174/426333
- Borda-Molina D., Zuber T., Siegert W., Camarinha-Silva A., Feuerstein D., Rodehutscord M. (2019). Effects of protease and phytase supplements on small intestinal microbiota and amino acid digestibility in broiler chickens. Poultry Sci., 98: 2906–2918.10.3382/ps/pez038
- Choct M., Annison G. (1992). The inhibition of nutrient digestion by wheat pentosans. Br. J. Nutr., 67: 123–132.10.1079/BJN19920014
- Choct M., Dersjant-Li Y., McLeish J., Peisker M. (2010). Soy oligosaccharides and soluble non-starch polysaccharides: a review of digestion, nutritive and anti-nutritive effects in pigs and poultry. Asian-Aust. J. Anim. Sci., 23: 1386–1398.10.5713/ajas.2010.90222
- Colombatto D., Beauchemin K.A. (2009). A protease additive increases fermentation of alfalfa diets by mixed ruminal microorganisms in vitro. J. Anim. Sci., 87: 1097–1105.10.2527/jas.2008-1262
- Columbus D., De Lange C. (2012). Evidence for validity of ileal digestibility coefficients in monogastrics. Br. J. Nutr., 108: S264–S272.10.1017/S0007114512002334
- Council Regulation (EC) No 1099/2009 of 24 September 2009 on the protection of animals at the time of killing. Off. J., L 303: 1–30.
- Cowieson A.J., Roos F.F. (2016). Toward optimal value creation through the application of exogenous mono-component protease in the diets of non-ruminants. Anim. Feed Sci. Technol., 221: 331–340.10.1016/j.anifeedsci.2016.04.015
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Off. J., L 276: 33–79.
- EFSA (European Food Safety Authority) (2009). Scientific opinion of the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) and the Panel on Genetically Modified Organisms (GMO) on a request from the European Commission on the safety and efficacy of Ronozyme® ProAct (serine protease) for use as feed additive for chickens for fattening. EFSA J., 1185: 1–17.10.2903/j.efsa.2009.1185
- Englyst H.N., Wiggins H.S., Cummings J.H. (1982). Determination of non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst, 107: 307–318.10.1039/an9820700307
- Gdala J., Buraczewska L. (1996). Chemical composition and carbohydrate content of seeds from several lupin species. J. Anim. Feed Sci., 5: 403–416.10.22358/jafs/69618/1996
- Gresta F., Wink M., Prins U. Abberton M., Capraro J., Scarafoni A., Hill G. (2017). Lupins in European cropping systems. In: Legumes in cropping systems, Murphy-Bokern D., Stoddard F., Watson C. (eds). CABI Publishing, Wallingford, UK, pp. 88–108.10.1079/9781780644981.0088
- Hejdysz M., Kaczmarek, S.A., Rogiewicz A., Rutkowski A. (2018). Influence of graded dietary levels of meals from three lupin species on the excreta dry matter, intestinal viscosity, excretion of total and free sialic acids, and intestinal morphology of broiler chickens. Anim. Feed Sci. Techol., 241: 223–232.10.1016/j.anifeedsci.2018.01.015
- Hejdysz M., Kaczmarek S.A., Rogiewicz A., Rutkowski A. (2019). Influence of graded levels of meals from three lupin species on growth performance and nutrient digestibility in broiler chickens. Br. Poult. Sci., 60: 288–296.10.1080/00071668.2019.1593947
- Hejdysz M., Kaczmarek S.A., Kubiś M., Wiśniewska Z., Peris S., Budnik S., Rutkowski A. (2020). The effect of protease and Bacillus licheniformis on nutritional value of pea, faba bean, yellow lupin and narrow-leaved lupin in broiler chicken diets. Br. Poult. Sci., 61: 287–293.10.1080/00071668.2020.1716303
- Huang K.H., Ravindran V., Li X., Bryden W.L. (2005). Influence of age on the apparent ileal amino acid digestibility of feed ingredients for broiler chickens. Br. Poult. Sci., 46: 236–245.10.1080/00071660500066084
- Jansen G., Jürgens H.-U., Schliephake E., Seddig S., Ordon F. (2015). Effects of growing system and season on the alkaloid content and yield of different sweet L. angustifolius genotypes. J. Appl. Bot. Food Qual., 88: 1–4.
- Jeroch H., Kozłowski K., Mikulski D., Jamroz D., Schöne F., Zduńczyk Z. (2016). Lupines (Lupinus spp.) as a protein feedstuff for poultry. 2) Results of poultry feeding trials and recommendations on diet formulation. Europ. Poult. Sci., 80: 166.
- Jerzak M.A., Śmiglak-Krajewska M. (2020). Globalization of the market for vegetable protein feed and its impact on sustainable agricultural development and food security in EU countries illustrated by the example of Poland. Sustainability, 12: 888.10.3390/su12030888
- Jezierny D., Mosenthin R., Bauer E. (2010). The use of grain legumes as a protein source in pig nutrition: A review. Anim. Feed Sci. Techol., 157: 111–128.10.1016/j.anifeedsci.2010.03.001
- Kaczmarek S.A., Kasprowicz-Potocka M., Hejdysz M., Mikuła R., Rutkowski A. (2014). The nutritional value of narrow-leafed lupin (Lupinus angustifolius) for broilers. J. Anim. Feed Sci., 23: 160–166.10.22358/jafs/65705/2014
- Kaczmarek S.A., Hejdysz M., Kubiś M., Kasprowicz-Potocka M., Rutkowski A. (2016). The nutritional value of yellow lupin (Lupinus luteus L.) for broilers. Anim. Feed Sci. Techol., 222: 43–53.10.1016/j.anifeedsci.2016.10.001
- Konieczka P., Smulikowska S. (2018). Viscosity negatively affects the nutritional value of blue lupin seeds for broilers. Animal, 12: 1144–1153.10.1017/S1751731117002622
- Kozłowski K., Helmbrecht A., Lemme A., Jankowski J., Jeroch H. (2011). Standardized ileal digestibility of amino acids from high-protein feedstuffs for growing turkeys – a preliminary study. Arch. Geflugelkd., 75: 185–190.
- Księżak J., Staniak M., Bojarszczuk J. (2018). Nutrient contents in yellow lupine (Lupinus luteus L.) and blue lupine (Lupinus angustifolius L.) cultivars depending on habitat conditions. Pol. J. Environ. Stud., 27: 1145–1153.10.15244/pjoes/76677
- Lien K.A., Sauer W.C., He J.M. (2001). Dietary influences on the secretion into and degradation of mucin in the digestive tract of monogastric animals and humans. J. Anim. Feed Sci., 10: 223–245.10.22358/jafs/67980/2001
- Martínez-Villaluenga C., Frias J., Vidal-Valverde C. (2008). Alpha-galactosides: antinutritional factors or functional ingredients? Crit. Rev. Food Sci. Nutr., 48: 301–316.10.1080/10408390701326243
- McDonald D.E., Pethick D.W., Mullan B.P., Hampson D.J. (2001). Increasing viscosity of the intestinal contents alters small intestinal structure and intestinal growth, and stimulates proliferation of enterotoxigenic Escherichia coli in newly-weaned pigs. Br. J. Nutr., 86: 487–498.10.1079/BJN2001416
- Nalle C.L., Ravindran V., Ravindran G. (2011). Nutritional value of narrow-leafed lupin (Lupinus angustifolius) for broilers. Br. Poult. Sci., 52: 775–781.10.1080/00071668.2011.639343
- Olkowski A.A., Olkowski B.I., Amarowicz R., Classen H.L. (2001). Adverse effects of dietary lupine in broiler chickens. Poultry Sci., 80: 621–625.10.1093/ps/80.5.621
- Olukosi O.A., Beeson L.A., Englyst K., Romero L.F. (2015). Effects of exogenous proteases without or with carbohydrases on nutrient digestibility and disappearance of non-starch polysaccharides in broiler chickens. Poultry Sci., 94: 2662–2669.10.3382/ps/pev260
- Petersen S.T., Wiseman J., Bedford M.R. (1999). Effects of age and diet on the viscosity of intestinal contents in broiler chicks. Br. Poult. Sci., 40: 364–370.10.1080/00071669987467
- Rada V., Lichovníková M., Foltyn M., Šafařík I. (2016). The effect of exogenous protease in broiler diets on the apparent ileal digestibility of amino acids and on protease activity in jejunum. Acta Univ. Agric. Silvic. Mendel. Brun., 64: 1645–1652.10.11118/actaun201664051645
- Ravindran V. (2013). Feed enzymes: the science, practice, and metabolic realities. J. Appl. Poult. Res., 22: 628–636.10.3382/japr.2013-00739
- Ravindran V., Tabe L.M., Molvig L., Higgins, T.J.V., Bryden W.L. (2002). Nutritional evaluation of transgenic high-methionine lupins (Lupinus angustifolius L.) with broiler chickens. J. Sci. Food Agric., 82: 280–285.10.1002/jsfa.1030
- Ravindran V., Hew L.I., Ravindran G., Bryden W.L. (2005). Apparent ileal digestibility of amino acids in dietary ingredients for broiler chickens. Anim. Sci., 81: 85–97.10.1079/ASC42240085
- Ruiz L.P., White S.F., Hove E.L. (1977). The alkaloid content of sweet lupin seed used in feeding trials on pigs and rats. Anim. Feed Sci. Technol., 2: 59–66.10.1016/0377-8401(77)90041-4
- Rutkowski A., Kaczmarek S., Hejdysz M., Nowaczewski S., Jamroz D. (2015). Concentrates made from legume seeds (Lupinus angustifolius, Lupinus luteus and Pisum sativum) and rapeseed meal as protein sources in laying hen diets. Ann. Anim. Sci., 15: 129–142.10.2478/aoas-2014-0061
- Rutkowski A., Kaczmarek S., Hejdysz M., Jamroz D. (2016). Effect of extrusion on nutrients digestibility, metabolizable energy and nutritional value of yellow lupine seeds for broiler chickens. Ann. Anim. Sci., 16: 1059–1072.10.1515/aoas-2016-0025
- Saha D.C., Gilbreath R.L. (1991). Analytical recovery of chromium from diet and feces determined by colorimetry and atomic absorption spectrophotometry. J. Sci. Food Agric., 55: 433–446.10.1002/jsfa.2740550311
- Sobotka W., Stanek M., Bogusz J. (2016). Evaluation of the nutritional value of yellow (Lupinus luteus) and blue lupine (Lupinus angustifolius) cultivars as protein sources in rats. Ann. Anim. Sci., 16: 197–207.10.1515/aoas-2015-0062
- Sujak A., Kotlarz A., Strobel W. (2006). Compositional and nutritional evaluation of several lupin seeds. Food Chem., 98: 711–719.10.1016/j.foodchem.2005.06.036
- Szczurek W., Świątkiewicz S. (2020). Standardised ileal amino acid digestibility in field pea seeds of two cultivars differing in flower colour for broiler chickens: effects of bird age and microbial protease. Animals, 10: 2099.10.3390/ani10112099
- Szczurek W., Szymczyk B., Arczewska-Włosek A., Świątkiewicz S. (2020) Apparent and standardised ileal digestibility of amino acids in wheat, triticale and barley for broiler chickens at two different ages. Br. Poult. Sci., 61: 63–69.10.1080/00071668.2019.167331731559836
- Toghyani M., Rodgers N., Iji P.A., Swick R.A. (2015). Standardized ileal amino acid digestibility of expeller-extracted canola meal subjected to different processing conditions for starter and grower broiler chickens. Poultry Sci., 94: 992–1002.10.3382/ps/pev047
- Toghyani M., McQuade L.R., McInerney B.V., Moss A.F., Selle P.H., Liu S.Y. (2020). Initial assessment of protein and amino acid digestive dynamics in protein-rich feedstuffs for broiler chickens. PLoS One 15(9): e0239156.10.1371/journal.pone.0239156
- Walk C.L., Pirgozliev V., Juntunen K., Paloheimo M., Ledoux D.R. (2018). Evaluation of novel protease enzymes on growth performance and apparent ileal digestibility of amino acids in poultry: Enzyme screening. Poultry Sci., 97: 2123–2138.10.3382/ps/pey080
- Wasilewko J., Buraczewska L. (1999). Chemical composition including content of amino acids, minerals and alkaloids in seeds of three lupin species cultivated in Poland. J. Anim. Feed Sci., 8: 1–12.10.22358/jafs/68803/1999
- Watson C.A., Reckling M., Preissel S., Bachinger J., Bergkvist G., Kuhlman T., Lindström K., Nemecek T., Topp C.F.E., Vanhatalo A., et al. (2017). Grain legume production and use in European agricultural systems. In: Advances in agronomy, Sparks D.L. (ed.). Elsevier Academic Press, San Diego, USA, pp. 235–303.10.1016/bs.agron.2017.03.003
- Zaworska A., Frankiewicz A., Kasprowicz-Potocka M. (2017). The influence of narrow-leafed lupin seed fermentation on their chemical composition and ileal digestibility and microbiota in growing pigs. Arch. Anim. Nutr., 71: 285–296.10.1080/1745039X.2017.1329130