Have a personal or library account? Click to login

Effects of higher plasma growth hormone levels on subclinical ketosis in postpartum Holstein cows

Open Access
|Oct 2022

References

  1. Accorsi P.A., Govoni N., Gaiani R., Pezzi C., Seren E., Tamanini C. (2005). Leptin, GH, PRL, insulin and metabolic parameters throughout the dry period and lactation in dairy cows. Reprod Domest Anim., 40: 217–223.10.1111/j.1439-0531.2005.00581.x
  2. Agenäs S., Burstedt E., Holtenius K. (2003). Effects of feeding intensity during the dry period. 1. Feed intake, body weight, and milk production. J Dairy Sci., 86: 870–82.10.3168/jds.S0022-0302(03)73670-4
  3. Alshehabat M., Alekish M., Talafha A. (2016). Selected metabolic biochemical and enzyme activities associated with Besnoitia besnoiti infection in dairy cattle. Trop anim health prod., 48: 1301–1304.10.1007/s11250-016-1077-7
  4. Caixeta L.S., Omontese B.O. (2021). Monitoring and Improving the Metabolic Health of Dairy Cows during the Transition Period. Animals (Basel), 11: 352.10.3390/ani11020352
  5. Chelikani P.K., Ambrose J.D., Keisler D.H., Kennelly J.J. (2004). Effect of short-term fasting on plasma concentrations of leptin and other hormones and metabolites in dairy cattle. Domest Anim Endocri., 26, 33–48.10.1016/j.domaniend.2003.08.00314732451
  6. Chen Y., Dong Z., Li R., Xu C. (2018). Changes in selected biochemical parameters (including FGF21) during subclinical and clinical ketosis in dairy cows. Med Wet., 74: 727–730.10.21521/mw.6133
  7. Cooper-Prado M.J., Rubio I., Long N.M., Davis M.P., Spicer L.J., Wettemann R.P. (2018). Case Study: Effects of body weight gain and bovine somatotropin treatment of post-partum beef cows on concentrations of IGF-1, insulin, and glucose in blood plasma, luteal activity, and calf growth. The Profess Ani Scient., 34, 513–521.10.15232/pas.2018-01746
  8. Csillik Z., Faigl V., Keresztes M., Galamb E., Hammon H.M., Tröscher A., Fébel H., Kulcsár M., Husvéth F., Huszenicza G., Butler W.R. (2017). Effect of pre-and postpartum supplementation with lipid-encapsulated conjugated linoleic acid on reproductive performance and the growth hormone–insulin-like growth factor-I axis in multiparous high-producing dairy cows. J Dairy Sci., 100: 5888–5898.10.3168/jds.2016-12124
  9. Deniz A.B., Aksoy K., Metin M. (2020). Transition period and subclinical ketosis in dairy cattle: association with milk production, metabolic and reproductive disorders and economic aspects. Med Wet., 76: 9.10.21521/mw.6427
  10. De Roos A.P., Van Den Bijgaart H.J., Hørlyk J., De Jong G. (2007). Screening for subclinical ketosis in dairy cattle by Fourier transform infrared spectrometry J Dairy Sci., 90: 1761–1766.10.3168/jds.2006-203
  11. Du X., Chen L., Huang D., PengZ., Zhao, C., Zhang Y., Zhu Y., Wang Z., Li X., Liu G. (2017). Elevated apoptosis in the liver of dairy cows with ketosis. Cell Physio Biochem., 43: 568–578.10.1159/000480529
  12. Du X., Zhu Y., Peng Z., Cui Y., Zhang Q., Shi Z., Guan Y., Sha X., Shen T., Yang Y., Li X. (2018). High concentrations of fatty acids and β-hydroxybutyrate impair the growth hormone-mediated hepatic JAK2-STAT5 pathway in clinically ketotic cows.J Dairy Sci., 101: 3476–3487.10.3168/jds.2017-13234
  13. Duffield T., Lissemore K., McBride B., Leslie K. (2009). Impact of hyperketonemia in early lactation dairy cows on health and production. J Dairy Sci., 92: 571–580.10.3168/jds.2008-1507
  14. IBM Corp. (2013). IBM SPSS Statistics for Windows, Version 22.0. IBM Corp., Armonk, NY. El-Kasrawy N.I., Swelum A.A., Abdel-Latif M.A. et al. (2020). Efficacy of Different Drenching Regimens of Gluconeogenic Precursors during Transition Period on Body Condition Score, Production, Reproductive Performance, Subclinical Ketosis and Economics of Dairy Cows. Animals (Basel), 10: 937.10.3390/ani10060937734149232485796
  15. Enjalbert, F., Nicot, M., Bayourthe C., Moncoulon R. (2001). Ketone bodies in milk and blood of dairy cows: Relationship between concentrations and utilization for detection of subclinical ketosis. J Dairy Sci., 84: 583–589.10.3168/jds.S0022-0302(01)74511-0
  16. Esposito G., Irons P.C., Webb E.C., Chapwanya A. (2014). Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Ani Reproduc Sci., 144: 60–71.10.1016/j.anireprosci.2013.11.007
  17. Flint D.J., Gardner M. (1994). Evidence that growth hormone stimulates milk synthesis by direct action on the mammary gland and that prolactin exerts effects on milk secretion by maintenance of mammary deoxyribonucleic acid content and tight junction status. Endocrino., 135: 1119–1124.10.1210/endo.135.3.8070355
  18. Flores J., García J.E., Mellado J., Gaytán L., De Santiago A., Bosque M.M. (2019). Effect of growth hormone on milk yield and reproductive performance of subfertile Holstein cows during extended lactations. Span J Agri Res., 17: 11.10.5424/sjar/2019171-13842
  19. Gabai G., Cozzi G., Rosi F., Andrighetto I., Bono G. (2002). Glucose or essential amino acid infusions in late pregnant and early lactating Simmenthal cows failed to induce a leptin response. J Vet Med Ser A., 49: 73–80.10.1046/j.1439-0442.2002.jv419.x
  20. Garry B., Ganche E., Hennessy D., O’Donovan M., Murphy J.P., Kennedy E. (2021). Restricting dairy cow access time to pasture in autumn: The effects on milk production, grazing behaviour and DM intake of late lactation dairy cows. Animal, 15: 100335.10.1016/j.animal.2021.100335
  21. Gross J., van Dorland H. A., Bruckmaier R., Schwarz F. (2011). Performance and metabolic profile of dairy cows during a lactational and deliberately induced negative energy balance with subsequent realimentation. J Dairy Sci., 94: 1820–1830.10.3168/jds.2010-3707
  22. Gross J.J., Bruckmaier R.M. (2019). Metabolic challenges in lactating dairy cows and their assessment via established and novel indicators in milk. Animal, 13: 75–81.10.1017/S175173111800349X
  23. Grummer R.R. (2008). Nutritional and management strategies for the prevention of fatty liver in dairy cattle. The Vet J., 176: 10–20.10.1016/j.tvjl.2007.12.033
  24. Hayirli A., Grummer R., Nordheim E., CrumpP. (2003). Models for predicting dry matter intake of Holsteins during the prefresh transition period. J Dairy Sci., 86: 1771–1779.10.3168/jds.S0022-0302(03)73762-X
  25. He, B.X., Du X.H., Du Y.L., He Q.Q., Mohsin M.A. (2018). Association of Prepartum Hypoleptinemia and Postpartum Subclinical Ketosis in Holstein Dairy Cows. Pak Vet J., 38: 404–408.10.29261/pakvetj/2018.087
  26. Herdt T.H. (2000). Ruminant adaptation to negative energy balance: Influences on the etiology of ketosis and fatty liver. Veterinary Clinics: Food Ani Pract., 16: 215–230.10.1016/S0749-0720(15)30102-X
  27. Huang Y., Li Y., He B., Hu J., Mohsin. M.A.., Yu H., Wang P., Zhang P., Du Y., Huang L., Shen W. (2019). The Influence of Ketosis on the Rectal Microbiome of Chinese Holstein Cows. Pak Vet J., 39: 175–180.10.29261/pakvetj/2019.041
  28. Huang Y., Oikonomou, G., Hu, J., Li, Y., Du, X., Du, Y., Liu, Y., Zhang, P., Wang, P., Yu, H. and Tu, J., 2019a. Effect of feeding grape seed Proanthocyanidin extract on production performance, metabolic and anti-oxidative status of dairy cattle. Arquivo Brasileiro de Medicina Veterinária e Zootecnia., 71: 1207–1216.10.1590/1678-4162-10957
  29. Itle A., Huzzey J., Weary D., Von Keyserlingk M. (2015). Clinical ketosis and standing behavior in transition cows. J Dairy Sci., 98: 128–134.10.3168/jds.2014-7932
  30. Knob D.A., Thaler Neto A., Schweizer H., Weigand AC., Kappes R., Scholz A.M. (2021). Energy Balance Indicators during the Transition Period and Early Lactation of Purebred Holstein and Simmental Cows and Their Crosses. Animals (Basel), 11: 309.10.3390/ani11020309
  31. KongF., Yang, J., Zhen Z., Liang T., Zhu D., Gao R., Xie G. (2015). Gene cloning and molecular characterization of a β-glucosidase from Thermotoga naphthophila RUK-10: an effective tool for synthesis of galacto-oligosaccharide and alkyl galactopyranosides. Chem Res Chin Univ., 31: 774–780.10.1007/s40242-015-5179-y
  32. Kronfeld D.S. (1965). Growth hormone-induced ketosis in the cow. J Dairy Sci., 48: 342–346.10.3168/jds.S0022-0302(65)88225-X
  33. Muiño R., Hernández J., Benedito J.L., Castillo C. (2021). Effects of Calving Body Condition Score on Blood Acid–Base Balance of Primiparous Holstein-Friesian Dairy Cows in a Commercial Dairy Farm: A Case Study. Animals (Basel), 11: 2075.10.3390/ani11072075
  34. Overton T.R., Waldron M.R. (2004). Nutritional management of transition dairy cows: strategies to optimize metabolic health. J Dairy Sci., 87: 105–19.10.3168/jds.S0022-0302(04)70066-1
  35. Pascottini O.B., Leroy J.L.M.R., Opsomer G. (2020). Metabolic Stress in the Transition Period of Dairy Cows: Focusing on the Prepartum Period. Animals (Basel), 10: 1419.10.3390/ani10081419
  36. Raboisson D., Mounié M., Maigne E. (2014). Diseases, reproductive performance, and changes in milk production associated with subclinical ketosis in dairy cows: A meta-analysis and review. J Dairy Sci., 97: 7547–7563.10.3168/jds.2014-8237
  37. Reynolds C., Aikman P., Lupoli B., Humphries D., Beeve, D. (2003). Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation J Dairy Sci., 86: 1201–1217.10.3168/jds.S0022-0302(03)73704-7
  38. Sangalli J.R., Sampaio R.V., Del Collado M., da Silveira J.C., De Bem T.H.C., Perecin F., Smith L.C., Meirelles F.V. (2018). Metabolic gene expression and epigenetic effects of the ketone body β-hydroxybutyrate on H3K9ac in bovine cells, oocytes and embryos. Sci Rep., 8: 1–18.10.1038/s41598-018-31822-7
  39. Silva P.R., Soares H.F., Braz W.D., Bombardelli G.D., Clapper J.A., Keisler D.H., Chebel R.C. (2017). Effects of treatment of periparturient dairy cows with recombinant bovine somatotropin on health and productive and reproductive parameters. J Dairy Sci., 100, 3126–3142.10.3168/jds.2016-1173728215881
  40. Strączek I., Młynek K., Danielewicz A. (2021). The Capacity of Holstein-Friesian and Simmental Cows to Correct a Negative Energy Balance in Relation to Their Performance Parameters, Course of Lactation, and Selected Milk Components. Animals (Basel), 11: 1674.10.3390/ani11061674
  41. Wang X., Li X., Zhao C., Hu P., Chen H., Liu Z., Liu G., Wang Z. (2012). Correlation between composition of the bacterial community and concentration of volatile fatty acids in the rumen during the transition period and ketosis in dairy cows. Appl Environ Microbio., 78: 2386–2392.10.1128/AEM.07545-11
  42. Wang Y., Huo P., Sun Y., Zhang Y. (2019). Effects of Body Condition Score Changes During Peripartum on the Postpartum Health and Production Performance of Primiparous Dairy Cows. Animals (Basel), 9: 1159.10.3390/ani9121159
  43. Wang Y.P.; Cai M., Hua D.K., Zhang F., Jiang L.S., Zhao Y.G., Wang,H., Nan X.M., Xiong B.H. (2020). Metabolomics reveals effects of rumen-protected glucose on metabolism of dairy cows in early lactation. Ani Feed Sci and Techn., 269: 114620.10.1016/j.anifeedsci.2020.114620
  44. [42]. Williams W.F., Lee S.D., Head HH., Lynch J. (1963). Growth hormone effects on bovine blood plasma fatty acid concentration and metabolism. J Dairy Sci., 46: 1405140–8.10.3168/jds.S0022-0302(63)89290-5
  45. [10]. Wu Z.L., Chen S.Y., Jia X., Wang J., Lai S.J. (2020). Metabolomic and Proteomic Profiles Associated With Ketosis in Dairy Cows. Front in Genetics, 11: 1542.10.3389/fgene.2020.551587
  46. Xia C., Wang Z., Liu G.W., Zhang H.Y., Zhang C, Xu C. (2009). Changes of plasma metabolites, hormones, and mRNA expression of liver PEPCK-C in spontaneously ketotic dairy cows. Asian-Australas j Anim Sci., 23, 47–51.10.5713/ajas.2010.70307
  47. Youssef M., El-Ashker M. (2017). Significance of insulin resistance and oxidative stress in dairy cattle with subclinical ketosis during the transition period. Tropl Ani Health Produc., 49: 239–244.10.1007/s11250-016-1211-6
DOI: https://doi.org/10.2478/aoas-2022-0034 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1265 - 1272
Submitted on: Oct 24, 2021
Accepted on: Mar 29, 2022
Published on: Oct 29, 2022
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Muhammad Ali Mohsin, Xiaojing Zhou, Yu Huiru, Yulan Du, Lijin Huang, Wenxiang Shen, Mariusz Pierzchala, Przemysław Sobiech, Klaudia Miętkiewska, Chandra S. Pareek, Yunfei Huang, Baoxiang He, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.