Amodio N., Raimondi L., Juli G., Stamato M.A., Caracciolo D., Tagliaferri P., Tassone P. (2018). MALAT1: A druggable long non-coding RNA for targeted anti-cancer approaches. J. Hematol. Oncol., 11: 1–19.10.1186/s13045-018-0606-4
Carter S., Miard S., Boivin L., Sallé-Lefort S., Picard F. (2018). Loss of Malat1 does not modify age- or diet-induced adipose tissue accretion and insulin resistance in mice. PLoS One, 13.10.1371/journal.pone.0196603594498729746487
Cesana M., Cacchiarelli D., Legnini I., Santini T., Sthandier O., Chinappi M., Tramontano A., Bozzoni I. (2011). A long non-coding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 147: 358–369.10.1016/j.cell.2011.09.028
Chen H., Mo D., Li M, Zhang Y., Chen L., Zhang X., Li M., Zhou X., Chen Y. (2014). MiR-709 inhibits 3T3-L1 cell differentiation by targeting GSK3β of Wnt/β-catenin signaling. Cell. Signal., 26: 2583–2589.10.1016/j.cellsig.2014.07.017
Cheng L., Nan C., Kang L., Zhang N., Liu S., Chen H., Hong C., Chen Y., Liang Z., Liu X. (2020). Whole blood transcriptomic investigation identifies long non-coding RNAs as regulators in sepsis. J. Transl. Med., 18: 217.10.1186/s12967-020-02372-2
Deming Y., Li Z., Kapoor M., Harari O., Del -Aguila J.L., Black K., Carrell D., Cai Y., Fernandez M.V., Budde J., Ma S., Saef B., Howells B., Huang K. lin, Bertelsen S., Fagan A.M., Holtzman D.M., Morris J.C., Kim S., Saykin A.J., De Jager P.L., Albert M., Moghekar A., O’Brien R., Riemenschneider M., Petersen R.C., Blennow K., Zetterberg H., Minthon L., Van Deerlin V.M., Lee V.M.Y., Shaw L.M., Trojanowski J.Q., Schellenberg G., Haines J.L., Mayeux R., Pericak-Vance M.A., Farrer L.A., Peskind E.R., Li G., Di Narzo A.F., Kauwe J.S.K., Goate A.M., Cruchaga C. (2017). Genome-wide association study identifies four novel loci associated with Alzheimer’s endophenotypes and disease modifiers. Acta Neuropathol., 133: 839–856.10.1007/s00401-017-1685-y
Du J., Xu Y., Zhang P., Zhao X., Gan M., Li Q., Ma J., Tang G., Jiang Y., Wang J., Li X., Zhang S., Zhu L. (2018). MicroRNA-125a-5p affects adipocytes proliferation, differentiation and fatty acid composition of porcine intramuscular fat. Int. J. Mol. Sci., 19: 501.10.3390/ijms19020501
Ebrahimi R., Toolabi K., Jannat Ali Pour N., Mohassel Azadi S., Bahiraee A., Zamani-Garmsiri F., Emamgholipour S. (2020). Adipose tissue gene expression of long non-coding RNAs; MALAT1, TUG1 in obesity: Is it associated with metabolic profile and lipid homeostasis-related genes expression? Diabetol. Metab. Syndr., 12: 36.10.1186/s13098-020-00544-0
Eißmann M., Gutschner T., Hämmerle M., Günther S., Caudron -Herger M., Groß M., Schirmacher P., Rippe K., Braun T., Zörnig M., Diederichs S. (2012). Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol., 9: 1076–1087.10.4161/rna.21089
Goyenechea E., Crujeiras A.B., Abete I., Martínez J.A. (2009). Expression of two inflammation-related genes (RIPK3 and RNF216) in mononuclear cells is associated with weight-loss regain in obese subjects. J. Nutrigenet. Nutrigenom, 2: 78–84.10.1159/000210452
Gutschner T., Hämmerle M., Eißmann M., Hsu J., Kim Y., Hung G., Revenko, A., Arun G., Stentrup M., Groß M., Zörnig M., MacLeod A.R., Spector D.L., Diederichs S. (2013). The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res., 73: 1180–1189.10.1158/0008-5472.CAN-12-2850
Hou L., Shi J., Cao L., Xu G., Hu C., Wang C. (2017). Pig has no uncoupling protein 1. Biochem. Biophys. Res. Commun., 487: 795–800.10.1016/j.bbrc.2017.04.118
Ji P., Diederichs S., Wang W., Böing S., Metzger R., Schneider P.M., Tidow N., Brandt B., Buerger H., Bulk E., Thomas M., Berdel W.E., Serve H., Müller-Tidow C. (2003). MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22: 8031–8041.10.1038/sj.onc.1206928
Johnson R., Guigó R. (2014). The RIDL hypothesis: Transposable elements as functional domains of long noncoding RNAs. RNA, 20: 959–976.10.1261/rna.044560.114
Kim J., Piao H.L., Kim B.J., Yao F., Han Z., Wang Y., Xiao Z., Siverly A.N., Lawhon S.E., Ton B.N., Lee H., Zhou Z., Gan B., Nakagawa S., Ellis M.J., Liang H., Hung M.C., You M.J., Su, Y., Ma L. (2018). Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nat. Genet., 50: 1705–1715.10.1038/s41588-018-0252-3
Kurył J., Kapelański W., Pierzchała M., Bocian M., Grajewska S. (2003). A relationship between genotypes at the GH and LEP loci and carcass meat and fat deposition in pigs. Anim. Sci. Pap. Rep., 21: 15–26.
Liu L., Tan L., Yao J., Yang L. (2020). Long non-coding RNA MALAT1 regulates cholesterol accumulation in ox-LDL-induced macrophages via the microRNA-17-5p/ABCA1 axis. Mol. Med. Rep., 21: 1761–1770.
Liu X., Li D., Zhang D., Yin D., Zhao Y., Ji C., Zhao X., Li X., He Q., Chen R., Hu S., Zhu L. (2018). A novel antisense long noncoding RNA, TWISTED LEAF, maintains leaf blade flattening by regulating its associated sense R2R3-MYB gene in rice. New Phytol., 218: 774–788.10.1111/nph.15023
Liu L., Tan L., Yao J., Yang L. (2020). Long non-coding RNA MALAT1 regulates cholesterol accumulation in ox-LDL-induced macrophages via the microRNA-17-5p/ABCA1 axis. Mol. Med. Rep., 21: 1761–1770.10.3892/mmr.2020.10987
Love M.I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15.10.1186/s13059-014-0550-8430204925516281
Mann M., Wright P.R., Backofen R. (2017). IntaRNA 2.0: Enhanced and customizable prediction of RNA-RNA interactions. Nucleic Acids Res., 45: W435–W439.10.1093/nar/gkx279
Nielsen K.L., Hartvigsen M.L., Hedemann M.S., Lærke H.N., Hermansen K., Bach Knudsen K.E. (2014). Similar metabolic responses in pigs and humans to breads with different contents and compositions of dietary fibers: a metabolomics study. Am. J. Clin. Nutr., 99: 941–949.10.3945/ajcn.113.074724
Ørom U.A., Derrien T., Beringer M., Gumireddy K., Gardini A., Bussotti G., Lai F., Zytnicki M., Notredame C., Huang Q., Guigo R., Shiekhattar R. (2010). Long non-coding RNAs with enhancer like function in human cells. Cell, 143: 46–58.10.1016/j.cell.2010.09.001
Perdomo G., Kim D.H., Zhang T., Qu S., Thomas E.A., Toledo F.G.S., Slusher S., Fan Y., Kelley D.E., Dong H.H. (2010). A role of apolipoprotein D in triglyceride metabolism. J. Lipid Res., 51: 1298–1311.10.1194/jlr.M001206
Piórkowska K., Ropka-Molik K., Eckert R., Rózycki M. (2013). The expression pattern of proteolytic enzymes of cathepsin family in two important porcine skeletal muscles. Livest. Sci., 157: 427–434.10.1016/j.livsci.2013.09.002
Ropka-Molik K., Pawlina-Tyszko K., Żukowski K., Tyra M., Derebecka N., Wesoły J., Szmatoła T., Piórkowska K., (2020). Identification of molecular mechanisms related to pig fatness at the transcriptome and miRNAome levels. Genes (Basel)., 11: 600.10.3390/genes11060600
Sindhu S., Akhter N., Kochumon S., Thomas R., Wilson A., Shenouda S., Tuomilehto J., Ahmad R. (2018). Increased expression of the innate immune receptor TLR10 in obesity and type-2 diabetes: Association with ROS-mediated oxidative stress. Cell. Physiol. Biochem., 45: 572–590.10.1159/000487034
Singh D.K., Prasanth K. V. (2013). Functional insights into the role of nuclear-retained long noncoding RNAs in gene expression control in mammalian cells. Chromosom. Res., 21: 695–711.10.1007/s10577-013-9391-7
Singh U.P., Singh N.P., Murphy E.A., Singh S.K., Price R.L., Nagarkatti M., Nagarkatti P.S. (2018). Adipose T cell microRNAs influence the T cell expansion, microbiome and macrophage function during obesity. J. Immunol., 200.10.4049/jimmunol.200.Supp.108.2
Skorobogatko Y., Dragan M., Cordon C., Reilly S.M., Hung C.W., Xia W., Zhao P., Wallace M., Lackey D.E., Chen X.W., Osborn O., Bogner -Strauss J.G., Theodorescu D., Metallo C.M., Olefsky J.M., Saltiel A.R., (2018). RalA controls glucose homeostasis by regulating glucose uptake in brown fat. Proc. Natl. Acad. Sci. U. S. A., 115: 7819–7824.10.1073/pnas.1801050115
Song W., Chen Y.P., Huang R., Chen K., Pan P.L., Li J., Yang Y., Shang H.F. (2012). GLIS1 rs797906: An increased risk factor for late-onset Parkinson’s disease in the han Chinese population. Eur. Neurol., 68: 89–92.10.1159/000337955
Song Z., Cooper D.K.C., Cai Z., Mou L. (2018). Expression and regulation profile of mature microRNA in the pig: Relevance to xenotransplantation. Biomed Res. Int. 2018.10.1155/2018/2983908588440329750148
Stachowiak M., Szczerbal I., Switonski M. (2016). Genetics of adiposity in large animal models for human obesity – studies on pigs and dogs. Prog. Mol. Biol. Transl. Sci., 140: 233–270.10.1016/bs.pmbts.2016.01.001
St. Laurent G., Wahlestedt C., Kapranov P. (2015). The landscape of long non-coding RNA classification. Trends Genet., 31: 239–251.10.1016/j.tig.2015.03.007
Sun Y., Chen X., Qin J., Liu S., Zhao R., Yu T., Chu G., Yang G., Pang W. (2018). Comparative analysis of long noncoding RNAs expressed during intramuscular adipocytes adipogenesis in fattype and lean-type pigs. J. Agric. Food Chem., 66: 12122–12130.10.1021/acs.jafc.8b04243
Sun Y., Cai R., Wang Y., Zhao R., Qin J., Pang W. (2020). A newly identified LNcRNA LncIMF4 controls adipogenesis of porcine intramuscular preadipocyte through attenuating autophagy to inhibit lipolysis. Animals, 10.10.3390/ani10060926734152832466602
Takahashi, K., Sakurai, N., Emura, N., Hashizume, T., Sawai, K., 2015. Effects of downregulating GLIS1 transcript on preimplantation development and gene expression of bovine embryos. J. Reprod. Dev., 61: 369–374.10.1262/jrd.2015-029462314126074126
Tosic M., Allen A., Willmann D., Lepper C., Kim J., Duteil D., Schüle R. (2018). Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells. Nat. Commun., 9.10.1038/s41467-017-02740-5578554029371665
Xia S.F., Duan X.M., Cheng X.R., Chen L.M., Kang Y.J., Wang P., Tang X., Shi Y.H., Le G.W. (2017). Role of miR-383 and miR-146b in different propensities to obesity in male mice. J. Endocrinol., 234: 201–216.10.1530/JOE-17-0044
Xu Y., Du J., Zhang P., Zhao X., Li Q., Jiang A., Jiang D., Tang G., Jiang Y., Wang J., Li X., Zhang S., Zhu L. (2018). MicroRNA-125a-5p Mediates 3T3-L1 Preadipocyte Proliferation and Differentiation. Molecules, 23: 317.10.3390/molecules23020317
Yan C., Chen J., Chen N. (2016). Long noncoding RNA MALAT1 promotes hepatic steatosis and insulin resistance by increasing nuclear SREBP-1c protein stability. Sci. Rep., 6: 1–11.10.1038/srep22640
Yu L., Tai L., Zhang L., Chu Y., Li Y., Zhou L. (2017). Comparative analyses of long non-coding RNA in lean and obese pig. Oncotarget, 8: 41440–41450.10.18632/oncotarget.18269
Zhang B., Arun G., Mao Y.S., Lazar Z., Hung G., Bhattacharjee G., Xiao X., Booth C.J., Wu J., Zhang C., Spector D.L. (2012). The lncRNA malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep., 2: 111–123.10.1016/j.celrep.2012.06.003
Zhang X., Wang W., Zhu W., Dong J., Cheng Y., Yin Z., Shen F. (2019a). Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int. J. Mol. Sci., 20.10.3390/ijms20225573688808331717266
Zhang X., Zhou Y., Chen S., Li W., Chen W., Gu W. (2019 b). LncRNA MACC1-AS1 sponges multiple miRNAs and RNA-binding protein PTBP1. Oncogenesis, 8: 1–13.10.1038/s41389-019-0182-7690468031822653
Zhu Y.-L., Chen T., Xiong J.-L., Wu D., Xi Q.-Y., Luo J.-Y., Sun J.-J., Zhang Y.-L. (2018). miR-146b Inhibits Glucose Consumption by targeting IRS1 gene in porcine primary adipocytes. Int. J. Mol. Sci., 19: 783.10.3390/ijms19030783