Have a personal or library account? Click to login

New long-non coding RNAs related to fat deposition based on pig model

Open Access
|Oct 2022

References

  1. Amodio N., Raimondi L., Juli G., Stamato M.A., Caracciolo D., Tagliaferri P., Tassone P. (2018). MALAT1: A druggable long non-coding RNA for targeted anti-cancer approaches. J. Hematol. Oncol., 11: 1–19.10.1186/s13045-018-0606-4
  2. Böhmdorfer G., Wierzbicki A.T. (2015). Control of chromatin structure by long noncoding RNA. Trends Cell. Biol., 25: 623–632.10.1016/j.tcb.2015.07.002
  3. Carter S., Miard S., Boivin L., Sallé-Lefort S., Picard F. (2018). Loss of Malat1 does not modify age- or diet-induced adipose tissue accretion and insulin resistance in mice. PLoS One, 13.10.1371/journal.pone.0196603594498729746487
  4. Carvalho F.P. (2017). Pesticides, environment, and food safety. Food Energ. Secur., 6: 48–60.10.1002/fes3.108
  5. Cesana M., Cacchiarelli D., Legnini I., Santini T., Sthandier O., Chinappi M., Tramontano A., Bozzoni I. (2011). A long non-coding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 147: 358–369.10.1016/j.cell.2011.09.028
  6. Chen H., Mo D., Li M, Zhang Y., Chen L., Zhang X., Li M., Zhou X., Chen Y. (2014). MiR-709 inhibits 3T3-L1 cell differentiation by targeting GSK3β of Wnt/β-catenin signaling. Cell. Signal., 26: 2583–2589.10.1016/j.cellsig.2014.07.017
  7. Cheng L., Nan C., Kang L., Zhang N., Liu S., Chen H., Hong C., Chen Y., Liang Z., Liu X. (2020). Whole blood transcriptomic investigation identifies long non-coding RNAs as regulators in sepsis. J. Transl. Med., 18: 217.10.1186/s12967-020-02372-2
  8. Chessler S.D., Fujimoto W.Y., Shofer J.B., Boyko E.J., Weigle D.S. (1998). Increased plasma leptin levels are associated with fat accumulation in Japanese Americans. Diabetes, 47: 239–243.10.2337/diabetes.47.2.239
  9. Deming Y., Li Z., Kapoor M., Harari O., Del -Aguila J.L., Black K., Carrell D., Cai Y., Fernandez M.V., Budde J., Ma S., Saef B., Howells B., Huang K. lin, Bertelsen S., Fagan A.M., Holtzman D.M., Morris J.C., Kim S., Saykin A.J., De Jager P.L., Albert M., Moghekar A., O’Brien R., Riemenschneider M., Petersen R.C., Blennow K., Zetterberg H., Minthon L., Van Deerlin V.M., Lee V.M.Y., Shaw L.M., Trojanowski J.Q., Schellenberg G., Haines J.L., Mayeux R., Pericak-Vance M.A., Farrer L.A., Peskind E.R., Li G., Di Narzo A.F., Kauwe J.S.K., Goate A.M., Cruchaga C. (2017). Genome-wide association study identifies four novel loci associated with Alzheimer’s endophenotypes and disease modifiers. Acta Neuropathol., 133: 839–856.10.1007/s00401-017-1685-y
  10. Diederichs S. (2014). The four dimensions of non-coding RNA conservation. Trends Genet., 30: 121–123.10.1016/j.tig.2014.01.004
  11. Du J., Xu Y., Zhang P., Zhao X., Gan M., Li Q., Ma J., Tang G., Jiang Y., Wang J., Li X., Zhang S., Zhu L. (2018). MicroRNA-125a-5p affects adipocytes proliferation, differentiation and fatty acid composition of porcine intramuscular fat. Int. J. Mol. Sci., 19: 501.10.3390/ijms19020501
  12. Ebrahimi R., Toolabi K., Jannat Ali Pour N., Mohassel Azadi S., Bahiraee A., Zamani-Garmsiri F., Emamgholipour S. (2020). Adipose tissue gene expression of long non-coding RNAs; MALAT1, TUG1 in obesity: Is it associated with metabolic profile and lipid homeostasis-related genes expression? Diabetol. Metab. Syndr., 12: 36.10.1186/s13098-020-00544-0
  13. Eißmann M., Gutschner T., Hämmerle M., Günther S., Caudron -Herger M., Groß M., Schirmacher P., Rippe K., Braun T., Zörnig M., Diederichs S. (2012). Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol., 9: 1076–1087.10.4161/rna.21089
  14. Foote A.P., Hales K.E., Kuehn L.A., Keisler D.H., King D.A., Shackelford S.D., Wheeler T.L., Freetly H.C. (2015). Relationship of leptin concentrations with feed intake, growth, and efficiency in finishing beef steers. J. Anim. Sci., 93: 4401–4407.10.2527/jas.2015-9339
  15. Goyenechea E., Crujeiras A.B., Abete I., Martínez J.A. (2009). Expression of two inflammation-related genes (RIPK3 and RNF216) in mononuclear cells is associated with weight-loss regain in obese subjects. J. Nutrigenet. Nutrigenom, 2: 78–84.10.1159/000210452
  16. Gutschner T., Hämmerle M., Eißmann M., Hsu J., Kim Y., Hung G., Revenko, A., Arun G., Stentrup M., Groß M., Zörnig M., MacLeod A.R., Spector D.L., Diederichs S. (2013). The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res., 73: 1180–1189.10.1158/0008-5472.CAN-12-2850
  17. Hou L., Shi J., Cao L., Xu G., Hu C., Wang C. (2017). Pig has no uncoupling protein 1. Biochem. Biophys. Res. Commun., 487: 795–800.10.1016/j.bbrc.2017.04.118
  18. Iacomino G., Siani A. (2017). Role of microRNAs in obesity and obesity-related diseases. Genes Nutr., 12.10.1186/s12263-017-0577-z561346728974990
  19. Ji P., Diederichs S., Wang W., Böing S., Metzger R., Schneider P.M., Tidow N., Brandt B., Buerger H., Bulk E., Thomas M., Berdel W.E., Serve H., Müller-Tidow C. (2003). MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22: 8031–8041.10.1038/sj.onc.1206928
  20. Jia P., Wu N., Jia D., Sun Y. (2019). Downregulation of MALAT1 alleviates saturated fatty acid-induced myocardial inflammatory injury via the miR-26a/HMGB1/TLR4/NF-κB axis. Diabetes Metab. Syndr. Obes., Targets Ther., 12: 655–665.10.2147/DMSO.S203151
  21. Johnson R., Guigó R. (2014). The RIDL hypothesis: Transposable elements as functional domains of long noncoding RNAs. RNA, 20: 959–976.10.1261/rna.044560.114
  22. Joshi H., Vastrad B.M., Joshi N. (2020). Distinct molecular mechanisms analysis of obesity based on gene expression profiles. Res. Sq., doi: 10.21203/rs.3.rs-95029/v110.21203/rs.3.rs-95029/v1
  23. Kim J., Piao H.L., Kim B.J., Yao F., Han Z., Wang Y., Xiao Z., Siverly A.N., Lawhon S.E., Ton B.N., Lee H., Zhou Z., Gan B., Nakagawa S., Ellis M.J., Liang H., Hung M.C., You M.J., Su, Y., Ma L. (2018). Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nat. Genet., 50: 1705–1715.10.1038/s41588-018-0252-3
  24. Kurył J., Kapelański W., Pierzchała M., Bocian M., Grajewska S. (2003). A relationship between genotypes at the GH and LEP loci and carcass meat and fat deposition in pigs. Anim. Sci. Pap. Rep., 21: 15–26.
  25. Liu L., Tan L., Yao J., Yang L. (2020). Long non-coding RNA MALAT1 regulates cholesterol accumulation in ox-LDL-induced macrophages via the microRNA-17-5p/ABCA1 axis. Mol. Med. Rep., 21: 1761–1770.
  26. Liu X., Li D., Zhang D., Yin D., Zhao Y., Ji C., Zhao X., Li X., He Q., Chen R., Hu S., Zhu L. (2018). A novel antisense long noncoding RNA, TWISTED LEAF, maintains leaf blade flattening by regulating its associated sense R2R3-MYB gene in rice. New Phytol., 218: 774–788.10.1111/nph.15023
  27. Liu L., Tan L., Yao J., Yang L. (2020). Long non-coding RNA MALAT1 regulates cholesterol accumulation in ox-LDL-induced macrophages via the microRNA-17-5p/ABCA1 axis. Mol. Med. Rep., 21: 1761–1770.10.3892/mmr.2020.10987
  28. Love M.I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15.10.1186/s13059-014-0550-8430204925516281
  29. Mann M., Wright P.R., Backofen R. (2017). IntaRNA 2.0: Enhanced and customizable prediction of RNA-RNA interactions. Nucleic Acids Res., 45: W435–W439.10.1093/nar/gkx279
  30. Nielsen K.L., Hartvigsen M.L., Hedemann M.S., Lærke H.N., Hermansen K., Bach Knudsen K.E. (2014). Similar metabolic responses in pigs and humans to breads with different contents and compositions of dietary fibers: a metabolomics study. Am. J. Clin. Nutr., 99: 941–949.10.3945/ajcn.113.074724
  31. Ørom U.A., Derrien T., Beringer M., Gumireddy K., Gardini A., Bussotti G., Lai F., Zytnicki M., Notredame C., Huang Q., Guigo R., Shiekhattar R. (2010). Long non-coding RNAs with enhancer like function in human cells. Cell, 143: 46–58.10.1016/j.cell.2010.09.001
  32. Perdomo G., Kim D.H., Zhang T., Qu S., Thomas E.A., Toledo F.G.S., Slusher S., Fan Y., Kelley D.E., Dong H.H. (2010). A role of apolipoprotein D in triglyceride metabolism. J. Lipid Res., 51: 1298–1311.10.1194/jlr.M001206
  33. Pfaffl M.W., Tichopad A., Prgomet C., Neuvians T.P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnol. Lett., 26: 509–515.10.1023/B:BILE.0000019559.84305.47
  34. Piórkowska K., Ropka-Molik K., Eckert R., Rózycki M. (2013). The expression pattern of proteolytic enzymes of cathepsin family in two important porcine skeletal muscles. Livest. Sci., 157: 427–434.10.1016/j.livsci.2013.09.002
  35. Ropka-Molik K., Pawlina-Tyszko K., Żukowski K., Tyra M., Derebecka N., Wesoły J., Szmatoła T., Piórkowska K., (2020). Identification of molecular mechanisms related to pig fatness at the transcriptome and miRNAome levels. Genes (Basel)., 11: 600.10.3390/genes11060600
  36. Scott K.A., Melhorn S.J., Sakai R.R. (2012). Effects of chronic social stress on obesity. Curr. Obes. Rep., 1: 16–25.10.1007/s13679-011-0006-3
  37. Scoville D.W., Kang H.S., Jetten A.M. (2017). GLIS1-3: Emerging roles in reprogramming, stem and progenitor cell differentiation and maintenance. Stem Cell Investig., 4.10.21037/sci.2017.09.01563901129057252
  38. Sindhu S., Akhter N., Kochumon S., Thomas R., Wilson A., Shenouda S., Tuomilehto J., Ahmad R. (2018). Increased expression of the innate immune receptor TLR10 in obesity and type-2 diabetes: Association with ROS-mediated oxidative stress. Cell. Physiol. Biochem., 45: 572–590.10.1159/000487034
  39. Singh D.K., Prasanth K. V. (2013). Functional insights into the role of nuclear-retained long noncoding RNAs in gene expression control in mammalian cells. Chromosom. Res., 21: 695–711.10.1007/s10577-013-9391-7
  40. Singh U.P., Singh N.P., Murphy E.A., Singh S.K., Price R.L., Nagarkatti M., Nagarkatti P.S. (2018). Adipose T cell microRNAs influence the T cell expansion, microbiome and macrophage function during obesity. J. Immunol., 200.10.4049/jimmunol.200.Supp.108.2
  41. Skorobogatko Y., Dragan M., Cordon C., Reilly S.M., Hung C.W., Xia W., Zhao P., Wallace M., Lackey D.E., Chen X.W., Osborn O., Bogner -Strauss J.G., Theodorescu D., Metallo C.M., Olefsky J.M., Saltiel A.R., (2018). RalA controls glucose homeostasis by regulating glucose uptake in brown fat. Proc. Natl. Acad. Sci. U. S. A., 115: 7819–7824.10.1073/pnas.1801050115
  42. Song W., Chen Y.P., Huang R., Chen K., Pan P.L., Li J., Yang Y., Shang H.F. (2012). GLIS1 rs797906: An increased risk factor for late-onset Parkinson’s disease in the han Chinese population. Eur. Neurol., 68: 89–92.10.1159/000337955
  43. Song Z., Cooper D.K.C., Cai Z., Mou L. (2018). Expression and regulation profile of mature microRNA in the pig: Relevance to xenotransplantation. Biomed Res. Int. 2018.10.1155/2018/2983908588440329750148
  44. Stachowiak M., Szczerbal I., Switonski M. (2016). Genetics of adiposity in large animal models for human obesity – studies on pigs and dogs. Prog. Mol. Biol. Transl. Sci., 140: 233–270.10.1016/bs.pmbts.2016.01.001
  45. St. Laurent G., Wahlestedt C., Kapranov P. (2015). The landscape of long non-coding RNA classification. Trends Genet., 31: 239–251.10.1016/j.tig.2015.03.007
  46. Sun L., Lin J.D. (2019). Function and mechanism of long non-coding RNAs in adipocyte biology. Diabetes, 68: 887–896.10.2337/dbi18-0009
  47. Sun Y., Chen X., Qin J., Liu S., Zhao R., Yu T., Chu G., Yang G., Pang W. (2018). Comparative analysis of long noncoding RNAs expressed during intramuscular adipocytes adipogenesis in fattype and lean-type pigs. J. Agric. Food Chem., 66: 12122–12130.10.1021/acs.jafc.8b04243
  48. Sun Y., Cai R., Wang Y., Zhao R., Qin J., Pang W. (2020). A newly identified LNcRNA LncIMF4 controls adipogenesis of porcine intramuscular preadipocyte through attenuating autophagy to inhibit lipolysis. Animals, 10.10.3390/ani10060926734152832466602
  49. Takahashi, K., Sakurai, N., Emura, N., Hashizume, T., Sawai, K., 2015. Effects of downregulating GLIS1 transcript on preimplantation development and gene expression of bovine embryos. J. Reprod. Dev., 61: 369–374.10.1262/jrd.2015-029462314126074126
  50. Tosic M., Allen A., Willmann D., Lepper C., Kim J., Duteil D., Schüle R. (2018). Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells. Nat. Commun., 9.10.1038/s41467-017-02740-5578554029371665
  51. Tripathi V., Ellis J.D., Shen Z., Song D.Y., Pan Q., Watt A.T., Freier S.M., Bennett C.F., Sharma A., Bubulya P.A., Blencowe B.J., Prasanth S.G., Prasanth K. V. (2010). The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell, 39: 925–938.10.1016/j.molcel.2010.08.011
  52. Xia S.F., Duan X.M., Cheng X.R., Chen L.M., Kang Y.J., Wang P., Tang X., Shi Y.H., Le G.W. (2017). Role of miR-383 and miR-146b in different propensities to obesity in male mice. J. Endocrinol., 234: 201–216.10.1530/JOE-17-0044
  53. Xu Y., Du J., Zhang P., Zhao X., Li Q., Jiang A., Jiang D., Tang G., Jiang Y., Wang J., Li X., Zhang S., Zhu L. (2018). MicroRNA-125a-5p Mediates 3T3-L1 Preadipocyte Proliferation and Differentiation. Molecules, 23: 317.10.3390/molecules23020317
  54. Yan C., Chen J., Chen N. (2016). Long noncoding RNA MALAT1 promotes hepatic steatosis and insulin resistance by increasing nuclear SREBP-1c protein stability. Sci. Rep., 6: 1–11.10.1038/srep22640
  55. Yu L., Tai L., Zhang L., Chu Y., Li Y., Zhou L. (2017). Comparative analyses of long non-coding RNA in lean and obese pig. Oncotarget, 8: 41440–41450.10.18632/oncotarget.18269
  56. Zhang B., Arun G., Mao Y.S., Lazar Z., Hung G., Bhattacharjee G., Xiao X., Booth C.J., Wu J., Zhang C., Spector D.L. (2012). The lncRNA malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep., 2: 111–123.10.1016/j.celrep.2012.06.003
  57. Zhang X., Wang W., Zhu W., Dong J., Cheng Y., Yin Z., Shen F. (2019a). Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int. J. Mol. Sci., 20.10.3390/ijms20225573688808331717266
  58. Zhang X., Zhou Y., Chen S., Li W., Chen W., Gu W. (2019 b). LncRNA MACC1-AS1 sponges multiple miRNAs and RNA-binding protein PTBP1. Oncogenesis, 8: 1–13.10.1038/s41389-019-0182-7690468031822653
  59. Zhu Y.-L., Chen T., Xiong J.-L., Wu D., Xi Q.-Y., Luo J.-Y., Sun J.-J., Zhang Y.-L. (2018). miR-146b Inhibits Glucose Consumption by targeting IRS1 gene in porcine primary adipocytes. Int. J. Mol. Sci., 19: 783.10.3390/ijms19030783
DOI: https://doi.org/10.2478/aoas-2022-0028 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1211 - 1224
Submitted on: Dec 17, 2021
Accepted on: Mar 8, 2022
Published on: Oct 29, 2022
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Katarzyna Piórkowska, Kacper Żukowski, Katarzyna Ropka-Molik, Mirosław Tyra, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.