References
- Amodio N., Raimondi L., Juli G., Stamato M.A., Caracciolo D., Tagliaferri P., Tassone P. (2018). MALAT1: A druggable long non-coding RNA for targeted anti-cancer approaches. J. Hematol. Oncol., 11: 1–19.10.1186/s13045-018-0606-4
- Böhmdorfer G., Wierzbicki A.T. (2015). Control of chromatin structure by long noncoding RNA. Trends Cell. Biol., 25: 623–632.10.1016/j.tcb.2015.07.002
- Carter S., Miard S., Boivin L., Sallé-Lefort S., Picard F. (2018). Loss of Malat1 does not modify age- or diet-induced adipose tissue accretion and insulin resistance in mice. PLoS One, 13.10.1371/journal.pone.0196603594498729746487
- Carvalho F.P. (2017). Pesticides, environment, and food safety. Food Energ. Secur., 6: 48–60.10.1002/fes3.108
- Cesana M., Cacchiarelli D., Legnini I., Santini T., Sthandier O., Chinappi M., Tramontano A., Bozzoni I. (2011). A long non-coding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 147: 358–369.10.1016/j.cell.2011.09.028
- Chen H., Mo D., Li M, Zhang Y., Chen L., Zhang X., Li M., Zhou X., Chen Y. (2014). MiR-709 inhibits 3T3-L1 cell differentiation by targeting GSK3β of Wnt/β-catenin signaling. Cell. Signal., 26: 2583–2589.10.1016/j.cellsig.2014.07.017
- Cheng L., Nan C., Kang L., Zhang N., Liu S., Chen H., Hong C., Chen Y., Liang Z., Liu X. (2020). Whole blood transcriptomic investigation identifies long non-coding RNAs as regulators in sepsis. J. Transl. Med., 18: 217.10.1186/s12967-020-02372-2
- Chessler S.D., Fujimoto W.Y., Shofer J.B., Boyko E.J., Weigle D.S. (1998). Increased plasma leptin levels are associated with fat accumulation in Japanese Americans. Diabetes, 47: 239–243.10.2337/diabetes.47.2.239
- Deming Y., Li Z., Kapoor M., Harari O., Del -Aguila J.L., Black K., Carrell D., Cai Y., Fernandez M.V., Budde J., Ma S., Saef B., Howells B., Huang K. lin, Bertelsen S., Fagan A.M., Holtzman D.M., Morris J.C., Kim S., Saykin A.J., De Jager P.L., Albert M., Moghekar A., O’Brien R., Riemenschneider M., Petersen R.C., Blennow K., Zetterberg H., Minthon L., Van Deerlin V.M., Lee V.M.Y., Shaw L.M., Trojanowski J.Q., Schellenberg G., Haines J.L., Mayeux R., Pericak-Vance M.A., Farrer L.A., Peskind E.R., Li G., Di Narzo A.F., Kauwe J.S.K., Goate A.M., Cruchaga C. (2017). Genome-wide association study identifies four novel loci associated with Alzheimer’s endophenotypes and disease modifiers. Acta Neuropathol., 133: 839–856.10.1007/s00401-017-1685-y
- Diederichs S. (2014). The four dimensions of non-coding RNA conservation. Trends Genet., 30: 121–123.10.1016/j.tig.2014.01.004
- Du J., Xu Y., Zhang P., Zhao X., Gan M., Li Q., Ma J., Tang G., Jiang Y., Wang J., Li X., Zhang S., Zhu L. (2018). MicroRNA-125a-5p affects adipocytes proliferation, differentiation and fatty acid composition of porcine intramuscular fat. Int. J. Mol. Sci., 19: 501.10.3390/ijms19020501
- Ebrahimi R., Toolabi K., Jannat Ali Pour N., Mohassel Azadi S., Bahiraee A., Zamani-Garmsiri F., Emamgholipour S. (2020). Adipose tissue gene expression of long non-coding RNAs; MALAT1, TUG1 in obesity: Is it associated with metabolic profile and lipid homeostasis-related genes expression? Diabetol. Metab. Syndr., 12: 36.10.1186/s13098-020-00544-0
- Eißmann M., Gutschner T., Hämmerle M., Günther S., Caudron -Herger M., Groß M., Schirmacher P., Rippe K., Braun T., Zörnig M., Diederichs S. (2012). Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol., 9: 1076–1087.10.4161/rna.21089
- Foote A.P., Hales K.E., Kuehn L.A., Keisler D.H., King D.A., Shackelford S.D., Wheeler T.L., Freetly H.C. (2015). Relationship of leptin concentrations with feed intake, growth, and efficiency in finishing beef steers. J. Anim. Sci., 93: 4401–4407.10.2527/jas.2015-9339
- Goyenechea E., Crujeiras A.B., Abete I., Martínez J.A. (2009). Expression of two inflammation-related genes (RIPK3 and RNF216) in mononuclear cells is associated with weight-loss regain in obese subjects. J. Nutrigenet. Nutrigenom, 2: 78–84.10.1159/000210452
- Gutschner T., Hämmerle M., Eißmann M., Hsu J., Kim Y., Hung G., Revenko, A., Arun G., Stentrup M., Groß M., Zörnig M., MacLeod A.R., Spector D.L., Diederichs S. (2013). The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res., 73: 1180–1189.10.1158/0008-5472.CAN-12-2850
- Hou L., Shi J., Cao L., Xu G., Hu C., Wang C. (2017). Pig has no uncoupling protein 1. Biochem. Biophys. Res. Commun., 487: 795–800.10.1016/j.bbrc.2017.04.118
- Iacomino G., Siani A. (2017). Role of microRNAs in obesity and obesity-related diseases. Genes Nutr., 12.10.1186/s12263-017-0577-z561346728974990
- Ji P., Diederichs S., Wang W., Böing S., Metzger R., Schneider P.M., Tidow N., Brandt B., Buerger H., Bulk E., Thomas M., Berdel W.E., Serve H., Müller-Tidow C. (2003). MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22: 8031–8041.10.1038/sj.onc.1206928
- Jia P., Wu N., Jia D., Sun Y. (2019). Downregulation of MALAT1 alleviates saturated fatty acid-induced myocardial inflammatory injury via the miR-26a/HMGB1/TLR4/NF-κB axis. Diabetes Metab. Syndr. Obes., Targets Ther., 12: 655–665.10.2147/DMSO.S203151
- Johnson R., Guigó R. (2014). The RIDL hypothesis: Transposable elements as functional domains of long noncoding RNAs. RNA, 20: 959–976.10.1261/rna.044560.114
- Joshi H., Vastrad B.M., Joshi N. (2020). Distinct molecular mechanisms analysis of obesity based on gene expression profiles. Res. Sq., doi: 10.21203/rs.3.rs-95029/v110.21203/rs.3.rs-95029/v1
- Kim J., Piao H.L., Kim B.J., Yao F., Han Z., Wang Y., Xiao Z., Siverly A.N., Lawhon S.E., Ton B.N., Lee H., Zhou Z., Gan B., Nakagawa S., Ellis M.J., Liang H., Hung M.C., You M.J., Su, Y., Ma L. (2018). Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nat. Genet., 50: 1705–1715.10.1038/s41588-018-0252-3
- Kurył J., Kapelański W., Pierzchała M., Bocian M., Grajewska S. (2003). A relationship between genotypes at the GH and LEP loci and carcass meat and fat deposition in pigs. Anim. Sci. Pap. Rep., 21: 15–26.
- Liu L., Tan L., Yao J., Yang L. (2020). Long non-coding RNA MALAT1 regulates cholesterol accumulation in ox-LDL-induced macrophages via the microRNA-17-5p/ABCA1 axis. Mol. Med. Rep., 21: 1761–1770.
- Liu X., Li D., Zhang D., Yin D., Zhao Y., Ji C., Zhao X., Li X., He Q., Chen R., Hu S., Zhu L. (2018). A novel antisense long noncoding RNA, TWISTED LEAF, maintains leaf blade flattening by regulating its associated sense R2R3-MYB gene in rice. New Phytol., 218: 774–788.10.1111/nph.15023
- Liu L., Tan L., Yao J., Yang L. (2020). Long non-coding RNA MALAT1 regulates cholesterol accumulation in ox-LDL-induced macrophages via the microRNA-17-5p/ABCA1 axis. Mol. Med. Rep., 21: 1761–1770.10.3892/mmr.2020.10987
- Love M.I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15.10.1186/s13059-014-0550-8430204925516281
- Mann M., Wright P.R., Backofen R. (2017). IntaRNA 2.0: Enhanced and customizable prediction of RNA-RNA interactions. Nucleic Acids Res., 45: W435–W439.10.1093/nar/gkx279
- Nielsen K.L., Hartvigsen M.L., Hedemann M.S., Lærke H.N., Hermansen K., Bach Knudsen K.E. (2014). Similar metabolic responses in pigs and humans to breads with different contents and compositions of dietary fibers: a metabolomics study. Am. J. Clin. Nutr., 99: 941–949.10.3945/ajcn.113.074724
- Ørom U.A., Derrien T., Beringer M., Gumireddy K., Gardini A., Bussotti G., Lai F., Zytnicki M., Notredame C., Huang Q., Guigo R., Shiekhattar R. (2010). Long non-coding RNAs with enhancer like function in human cells. Cell, 143: 46–58.10.1016/j.cell.2010.09.001
- Perdomo G., Kim D.H., Zhang T., Qu S., Thomas E.A., Toledo F.G.S., Slusher S., Fan Y., Kelley D.E., Dong H.H. (2010). A role of apolipoprotein D in triglyceride metabolism. J. Lipid Res., 51: 1298–1311.10.1194/jlr.M001206
- Pfaffl M.W., Tichopad A., Prgomet C., Neuvians T.P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnol. Lett., 26: 509–515.10.1023/B:BILE.0000019559.84305.47
- Piórkowska K., Ropka-Molik K., Eckert R., Rózycki M. (2013). The expression pattern of proteolytic enzymes of cathepsin family in two important porcine skeletal muscles. Livest. Sci., 157: 427–434.10.1016/j.livsci.2013.09.002
- Ropka-Molik K., Pawlina-Tyszko K., Żukowski K., Tyra M., Derebecka N., Wesoły J., Szmatoła T., Piórkowska K., (2020). Identification of molecular mechanisms related to pig fatness at the transcriptome and miRNAome levels. Genes (Basel)., 11: 600.10.3390/genes11060600
- Scott K.A., Melhorn S.J., Sakai R.R. (2012). Effects of chronic social stress on obesity. Curr. Obes. Rep., 1: 16–25.10.1007/s13679-011-0006-3
- Scoville D.W., Kang H.S., Jetten A.M. (2017). GLIS1-3: Emerging roles in reprogramming, stem and progenitor cell differentiation and maintenance. Stem Cell Investig., 4.10.21037/sci.2017.09.01563901129057252
- Sindhu S., Akhter N., Kochumon S., Thomas R., Wilson A., Shenouda S., Tuomilehto J., Ahmad R. (2018). Increased expression of the innate immune receptor TLR10 in obesity and type-2 diabetes: Association with ROS-mediated oxidative stress. Cell. Physiol. Biochem., 45: 572–590.10.1159/000487034
- Singh D.K., Prasanth K. V. (2013). Functional insights into the role of nuclear-retained long noncoding RNAs in gene expression control in mammalian cells. Chromosom. Res., 21: 695–711.10.1007/s10577-013-9391-7
- Singh U.P., Singh N.P., Murphy E.A., Singh S.K., Price R.L., Nagarkatti M., Nagarkatti P.S. (2018). Adipose T cell microRNAs influence the T cell expansion, microbiome and macrophage function during obesity. J. Immunol., 200.10.4049/jimmunol.200.Supp.108.2
- Skorobogatko Y., Dragan M., Cordon C., Reilly S.M., Hung C.W., Xia W., Zhao P., Wallace M., Lackey D.E., Chen X.W., Osborn O., Bogner -Strauss J.G., Theodorescu D., Metallo C.M., Olefsky J.M., Saltiel A.R., (2018). RalA controls glucose homeostasis by regulating glucose uptake in brown fat. Proc. Natl. Acad. Sci. U. S. A., 115: 7819–7824.10.1073/pnas.1801050115
- Song W., Chen Y.P., Huang R., Chen K., Pan P.L., Li J., Yang Y., Shang H.F. (2012). GLIS1 rs797906: An increased risk factor for late-onset Parkinson’s disease in the han Chinese population. Eur. Neurol., 68: 89–92.10.1159/000337955
- Song Z., Cooper D.K.C., Cai Z., Mou L. (2018). Expression and regulation profile of mature microRNA in the pig: Relevance to xenotransplantation. Biomed Res. Int. 2018.10.1155/2018/2983908588440329750148
- Stachowiak M., Szczerbal I., Switonski M. (2016). Genetics of adiposity in large animal models for human obesity – studies on pigs and dogs. Prog. Mol. Biol. Transl. Sci., 140: 233–270.10.1016/bs.pmbts.2016.01.001
- St. Laurent G., Wahlestedt C., Kapranov P. (2015). The landscape of long non-coding RNA classification. Trends Genet., 31: 239–251.10.1016/j.tig.2015.03.007
- Sun L., Lin J.D. (2019). Function and mechanism of long non-coding RNAs in adipocyte biology. Diabetes, 68: 887–896.10.2337/dbi18-0009
- Sun Y., Chen X., Qin J., Liu S., Zhao R., Yu T., Chu G., Yang G., Pang W. (2018). Comparative analysis of long noncoding RNAs expressed during intramuscular adipocytes adipogenesis in fattype and lean-type pigs. J. Agric. Food Chem., 66: 12122–12130.10.1021/acs.jafc.8b04243
- Sun Y., Cai R., Wang Y., Zhao R., Qin J., Pang W. (2020). A newly identified LNcRNA LncIMF4 controls adipogenesis of porcine intramuscular preadipocyte through attenuating autophagy to inhibit lipolysis. Animals, 10.10.3390/ani10060926734152832466602
- Takahashi, K., Sakurai, N., Emura, N., Hashizume, T., Sawai, K., 2015. Effects of downregulating GLIS1 transcript on preimplantation development and gene expression of bovine embryos. J. Reprod. Dev., 61: 369–374.10.1262/jrd.2015-029462314126074126
- Tosic M., Allen A., Willmann D., Lepper C., Kim J., Duteil D., Schüle R. (2018). Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells. Nat. Commun., 9.10.1038/s41467-017-02740-5578554029371665
- Tripathi V., Ellis J.D., Shen Z., Song D.Y., Pan Q., Watt A.T., Freier S.M., Bennett C.F., Sharma A., Bubulya P.A., Blencowe B.J., Prasanth S.G., Prasanth K. V. (2010). The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell, 39: 925–938.10.1016/j.molcel.2010.08.011
- Xia S.F., Duan X.M., Cheng X.R., Chen L.M., Kang Y.J., Wang P., Tang X., Shi Y.H., Le G.W. (2017). Role of miR-383 and miR-146b in different propensities to obesity in male mice. J. Endocrinol., 234: 201–216.10.1530/JOE-17-0044
- Xu Y., Du J., Zhang P., Zhao X., Li Q., Jiang A., Jiang D., Tang G., Jiang Y., Wang J., Li X., Zhang S., Zhu L. (2018). MicroRNA-125a-5p Mediates 3T3-L1 Preadipocyte Proliferation and Differentiation. Molecules, 23: 317.10.3390/molecules23020317
- Yan C., Chen J., Chen N. (2016). Long noncoding RNA MALAT1 promotes hepatic steatosis and insulin resistance by increasing nuclear SREBP-1c protein stability. Sci. Rep., 6: 1–11.10.1038/srep22640
- Yu L., Tai L., Zhang L., Chu Y., Li Y., Zhou L. (2017). Comparative analyses of long non-coding RNA in lean and obese pig. Oncotarget, 8: 41440–41450.10.18632/oncotarget.18269
- Zhang B., Arun G., Mao Y.S., Lazar Z., Hung G., Bhattacharjee G., Xiao X., Booth C.J., Wu J., Zhang C., Spector D.L. (2012). The lncRNA malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep., 2: 111–123.10.1016/j.celrep.2012.06.003
- Zhang X., Wang W., Zhu W., Dong J., Cheng Y., Yin Z., Shen F. (2019a). Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int. J. Mol. Sci., 20.10.3390/ijms20225573688808331717266
- Zhang X., Zhou Y., Chen S., Li W., Chen W., Gu W. (2019 b). LncRNA MACC1-AS1 sponges multiple miRNAs and RNA-binding protein PTBP1. Oncogenesis, 8: 1–13.10.1038/s41389-019-0182-7690468031822653
- Zhu Y.-L., Chen T., Xiong J.-L., Wu D., Xi Q.-Y., Luo J.-Y., Sun J.-J., Zhang Y.-L. (2018). miR-146b Inhibits Glucose Consumption by targeting IRS1 gene in porcine primary adipocytes. Int. J. Mol. Sci., 19: 783.10.3390/ijms19030783