Ali M.A.M., Khuraiba H.M., Elsayed N.E.G., Sharawy Z.Z. (2020). The effect of different stocking densities of marine shrimp larvae Litopeneaus vannamei on water quality using biofloc technology. Egypt. J. Nutr. Feeds, 23: 183–195.10.21608/ejnf.2020.95845
Alves G.F.O., Fernandes A.F.A., Alvarenga E.R., Turra E.M., Sousa A.B., Teixeira, E.A. (2017). Effect of the transfer at different moments of juvenile Nile tilapia (Oreochromis niloticus) to the biofloc system in formation. Aquaculture, 479: 564–570.10.1016/j.aquaculture.2017.06.029
Anand P.S., Pillai S.M., Kumar S., Panigrahi A., Ravichandran P., Ponniah A. G., Ghoshal T.K. (2014). Growth, survival and length weight relationship of Fenneropenaeus merguiensis at two different stocking densities in low saline zero water exchange brackish water ponds. Indian J Mar Sci., 43: 1955–1966.
Anand P.S., Biju R.A.I.F., Balasubramanian P.C., Antony J., Saranya C., Christina L., Rajamanickam S., Panigrahi A., Ambasankar K., Vijayan K.K. (2021). Nursery rearing of Indian white shrimp, Penaeus indicus: Optimization of dietary protein levels and stocking densities under different management regimes. Aquaculture, 542: 736807.10.1016/j.aquaculture.2021.736807
Araneda M., Pérez E.P., Gasca-Leyva E. (2008). White shrimp Penaeus vannamei culture in freshwater at three densities: condition state based on length and weight. Aquaculture, 283: 13–18.10.1016/j.aquaculture.2008.06.030
Arnold S.J., Sellars M.J., Crocos P.J., Coman G.J. (2006). Intensive production of juvenile tiger shrimp Penaeus monodon: An evaluation of stocking density and artificial substrates. Aquaculture, 261: 890–896.10.1016/j.aquaculture.2006.07.036
Arnold S.J., Coman F.E., Jackson C.J., Groves S.A. (2009). High-intensity, zero water-exchange production of juvenile tiger shrimp, Penaeus monodon: an evaluation of artificial substrates and stocking density. Aquaculture, 293: 42–48.10.1016/j.aquaculture.2009.03.049
Avnimelech Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bioflocs technology ponds. Aquaculture, 264: 140–147.10.1016/j.aquaculture.2006.11.025
Avnimelech Y., Kochba M. (2009). Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks, using 15N tracing. Aquaculture, 287: 163–168.10.1016/j.aquaculture.2008.10.009
Azim M.E., Little D.C. (2008). The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283: 29–35.10.1016/j.aquaculture.2008.06.036
Balakrishnan G., Peyail S., Ramachandran K., Theivasigamani A., Savji K.A., Chokkaiah M., Nataraj P. (2011). Growth of cultured whiteleg shrimp Litopenaeus vannamei (Boone 1931) in different stocking density. Adv. Appl. Sci. Res., 2 (3): 107–113.
Correia E.S., Wilkenfeld J.S., Morris T.C., Wei L.Z., Prangnell D.I., Samocha T.M. (2014). Intensive nursery production of the Pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system. Aquac. Eng., 59: 48–54.10.1016/j.aquaeng.2014.02.002
Cuzon G., Lawrence A., Gaxiola G., Rosas C., Guillaume J. (2004). Nutrition of Litopenaeus vannamei reared in tanks or in ponds. Aquaculture, 235: 513–551.10.1016/j.aquaculture.2003.12.022
Das S.K., Mandal A. (2021a). Environmental amelioration in biofloc based rearing system of white leg shrimp (Litopenaeus vannamei) in West Bengal, India. Aquat. Living Resour., 34: 1–12.10.1051/alr/2021016
Das S.K., Mandal A. (2021b). Supplementation of biofloc in carp (Cyprinus carpio var. Communis) culture as a potential tool of resource management in aquaculture. Aquat. Living Resour., 34: 1–12.10.1051/alr/2021019
Dinda R., Mandal A., Das S.K. (2020). Neem (Azadirachta indica A. Juss) supplemented biofloc medium as alternative feed in common carp (Cyprinus carpio var. communis Linnaeus) culture. J. Appl. Aquac., 32: 361–379.10.1080/10454438.2019.1645076
Dorothy M.S., Vungarala H., Sudhagar A. Reddy A.K., Rani Asanaru Majeedkutty, B. (2021). Growth, body composition and antioxidant status of Litopenaeus vannamei juveniles reared at different stocking densities in the biofloc system using inland saline groundwater. Aquac. Res., 52: 6299–6307.10.1111/are.15493
Ebeling J.M., Timmons M.B., Bisogni J.J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic control of ammonia-nitrogen in aquaculture in aquaculture production systems. Aquaculture, 257: 346–358.10.1016/j.aquaculture.2006.03.019
El-Sayed A.M. (2021). Use of biofloc technology in shrimp aquaculture: a comprehensive review, with emphasis on the last decade. Rev. Aquacult., 13: 676–705.10.1111/raq.12494
Emerenciano M., Ballester E.L.C., Cavalli R.O., Wasielesky W. (2012). Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquac. Res., 43: 447–457.10.1111/j.1365-2109.2011.02848.x
Emerenciano M., Cuzon G., Arevalo M., Mascaro M., Gaxiola G. (2013). Effect of short-term fresh food supplementation on reproductive performance, biochemical composition and fatty acid profile of Litopenaeus vannamei (Boone) reared under biofloc conditions. Aquac. Int., 21: 987–1007.10.1007/s10499-012-9607-4
Emerenciano M., Cuzon G., Arevalo M., Gaxiola G. (2014). Biofloc technology in intensive broodstock farming of the pink shrimp Farfantepenaeus duorarum: spawning performance, biochemical composition and fatty acid profile of eggs. Aquac. Res., 45: 1713–1726.10.1111/are.12117
Emerenciano M.G.C., Martínez-C´ordova L.R., Martínez-Porchas M., Miranda-Baeza A. (2017). Biofloc technology (BFT): a tool for Water quality management in aquaculture. In: Tutu, Hlanganani (Ed.), Water Quality. Intech, pp. 91–109.10.5772/66416
Esparza-Leal H.M., Cardozo A.P., Wasielesky W. (2015). Performance of Litopenaeus vannamei post-larvae reared in indoor nursery tanks at high stocking density in clear-water versus biofloc system. Aquac. Eng., 68: 28–34.10.1016/j.aquaeng.2015.07.004
Esparza-Leal H.M., Ponce-Palafox J.T., Alvarez-Ruiz P., Lopez-´Alvarez E.S., Vazquez-Montoya N., Lopez-Espinoza M., Montoya-Mejía M., Gomez-Peraza R.L., Nava-Perez E. (2020). Effect of stocking density and water exchange on performance and stress tolerance to low and high salinity by Litopenaeus vannamei postlarvae reared with biofloc in intensive nursery phase. Aquac. Int., 28: 1473–1483.10.1007/s10499-020-00535-y
Furtado P.S., Campos B.R., Serra F.P., Klosterhoff M., Romano L.A., Wasielesky W. (2015). Effects of nitrate toxicity in the Pacific white shrimp, Litopenaeus vannamei, reared with biofloc technology (BFT). Aquac. Int., 23: 315–327.10.1007/s10499-014-9817-z
Gaona C.A., Poersch P.L., Krummenauer D., Foes G.K., Wasielesky W. (2011). The effect of solids removal on water quality, growth and survival of Litopenaeus vannamei in a biofloc technology culture system. Int. J. Recirc. Aquac., 12: 54–73.10.21061/ijra.v12i1.1354
Godoy L.C., Odebrecht C., Ballester E., Martins T.G., Wasielesky W. (2011). Effect of diatom supplementation during the nursery rearing of Litopenaeus vannamei (Boone, 1931) in a heterotrophic culture system. Aquac. Int., 20: 559–569.10.1007/s10499-011-9485-1
Hoang T., Leea S.Y., Keenan C.P., Marsden G.E. (2002). Effect of temperature on spawning of Penaeus merguiensis. J. Therm. Biol., 27: 433–437.10.1016/S0306-4565(02)00013-X
Hostins B., Braga A., Lopes D.L., Wasielesky W., Poersch L.H. (2015). Effect of temperature on nursery and compensatory growth of pink shrimp Farfantepenaeus brasiliensis reared in a super-intensive biofloc system. Aquac. Eng., 66: 62–67.10.1016/j.aquaeng.2015.03.002
Huang J., Yang Q., Ma Z., Zhou F., Yang L., Deng J., Jiang S. (2017). Effects of adding sucrose on Penaeus monodon (Fabricius, 1798) growth performance and water quality in a biofloc system. Aquac. Res., 48: 2316–2327.10.1111/are.13067
Hussain A.S., Mohammad D.A., Sallam W.S., Shoukry N.M., Davis D.A. (2021). Effects of culturing the Pacific white shrimp Penaeus vannamei in “biofloc” vs “synbiotic” systems on the growth and immune system. Aquaculture, 542: 736905.10.1016/j.aquaculture.2021.736905
Khanjani M.H., Sharifinia M. (2020). Biofloc technology as a promising tool to improve aquaculture production. Rev. Aquacult., 12: 1836–1850.10.1111/raq.12412
Khanjani M.H., Sharifinia M. (2021). Production of Nile tilapia Oreochromis niloticus reared in a limited water exchange system: The effect of different light levels. Aquaculture, 542: 736912.10.1016/j.aquaculture.2021.736912
Khanjani M.H., Sharifinia M. (2022). Biofloc technology with addition molasses as carbon sources applied to Litopenaeus vannamei juvenile production under the effects of different C/N ratios. Aquac.Int., 30: 383–397.10.1007/s10499-021-00803-5
Khanjani M.H., Sharifinia M., Hajirezaee S. (2020). Effects of different salinity levels on water quality, growth performance and body composition of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultured in a zero water exchange heterotrophic system. Ann. Anim. Sci., 20: 1471–1486.10.2478/aoas-2020-0036
Khanjani M.H., Alizadeh M., Sharifinia M. (2021a). Effects of different carbon sources on water quality, biofloc quality, and growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in a heterotrophic culture system. Aquac. Int., 29(1): 307–321.10.1007/s10499-020-00627-9
Khanjani M.H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021b). Biofloc system applied to Nile tilapia (Oreochromis niloticus) farming using different carbon sources: growth performance, carcass analysis, digestive and hepatic enzyme activity. Iran. J. Fish. Sci., 20(2); 490–513.
Khanjani M.H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021c). The effect of adding molasses in different times on performance of Nile tilapia (Oreochromis niloticus) raised in a lowsalinity biofloc system. Ann. Anim. Sci., 21(4): 1435–1454.10.2478/aoas-2021-0011
Khanjani M.H., Sharifinia M., Hajirezaee S. (2022b). Recent progress towards the application of biofloc technology for tilapia farming. Aquaculture, 552: 738021.10.1016/j.aquaculture.2022.738021
Krummenauer D., Cavalli R.O., Poersch, L.H., Wasielesky W. (2011).Super intensive culture of white shrimp, Litopenaeus vannamei, in a biofloc technology system in southern Brazil at different stocking densities. J. World Aquac. Soc., 42: 726–733.10.1111/j.1749-7345.2011.00507.x
Lara G., Krummenauer D., Abreu P.C., Poersch L.H., Wasielesky W. (2017). The use of different aerators on Litopenaeus vannamei biofloc culture system: effects on water quality, shrimp growth and biofloc composition. Aquac. Int., 25: 147–162.10.1007/s10499-016-0019-8
Legarda E.C., Barcelos S.S., Redig J.C., Ramírez N.C.B., Guimarães A.M., Santo C.M., Seiffert W.Q., Vieira F. (2018). Effects of stocking density and artificial substrates on yield and water quality in a biofloc shrimp nursery culture. Rev. Bras. Zootec., 47: e20170060.10.1590/rbz4720170060
Li Y., Li J., Wang Q. (2006). The effects of dissolved oxygen concentration and stocking density on growth and non-specific immunity factors in Chinese shrimp, Fenneropenaeus chinensis. Aquaculture, 256: 608–616.10.1016/j.aquaculture.2006.02.036
Liu G., Zhu S., Liu D., Guo X., Ye Z. (2017). Effects of stocking density of the white shrimp Litopenaeus vannamei (Boone) on immunities, antioxidant status, and resistance against Vibrio harveyi in a biofloc system. Fish Shellfish Immunol., 67: 19–26.10.1016/j.fsi.2017.05.038
Loureiro C.K., Wasielesky W., Abreu P.C. (2012). The use of protozoan, rotifers and nematodes as live food for shrimp raised in BFT system. Atlantica, Rio Grande, 34: 5–12.10.5088/atl.2012.34.1.5
Martınez-Cordova L.R., Emerenciano M., Miranda-Baeza A., Martınez-Porchas M. (2015). Microbial-based systems for aquaculture of fish and shrimp: An updated review. Rev. Aquacult., 7: 131–148.10.1111/raq.12058
Minabi K., Sourinejad I., Alizadeh M., Ghatrami E.R., Khanjani M.H. (2020). Effects of different carbon to nitrogen ratios in the biofloc system on water quality, growth, and body composition of common carp (Cyprinus carpio L.) fingerlings. Aquac. Int., 28: 1883–1898.10.1007/s10499-020-00564-7
Mishra J.K., Samocha T.M., Patnaik S., Speed M., Gandy R.L., Ali A.M. (2008). Performance of an intensive nursery system for the Pacific white shrimp, Litopenaeus vannamei, under limited discharge condition. Aquac. Eng., 38: 2–15.10.1016/j.aquaeng.2007.10.003
Moreno-Arias A., López-Elías J.A., Miranda-Baeza A., Rivas Negrini C., Castro C.S., Bittencourt-Guimaraes A.T., Frozza A., Ortiz-Kracizy R., Cupertino-Ballester E.L. (2017). Stocking density for freshwater prawn Macrobrachium rosenbergii (Decapoda, Palaemonidae) in biofloc system. Lat. Am. J. Aquat. Res., 45: 891–899.10.3856/vol45-issue5-fulltext-3
Moreno-Arias A., López-Elías J.A., Martínez-Córdova L.R., Ramírez-Suárez J.C., Carvallo-Ruiz M.G., García-Sánchez G., Lugo-Sánchez M.E., Miranda-Baeza A. (2018). Effect of fishmeal replacement with a vegetable protein mixture on the amino acid and fatty acid profiles of diets, biofloc and shrimp cultured in BFT system. Aquaculture, 483: 53–6210.1016/j.aquaculture.2017.10.011
Moss K.K., Moss S.M. (2004). Effects of artificial substrate and stocking density on the nursery production of Pacific white shrimp Litopenaeus vannamei. J. World Aquac. Soc., 35: 536–542.10.1111/j.1749-7345.2004.tb00121.x
Mugwanya M., Dawood M.A.O., Kimera F., Sewilam H. (2021). Biofloc systems for sustainable production of economically important aquatic species: A review. Sustainability, 13: 7255.10.3390/su13137255
Neto H.S., Santaella S.T., Nunes A.J.P. (2015). Bioavailability of crude protein and lipid from biofloc meals produced in an activated sludge system for white shrimp, Litopenaeus vannamei. Rev. Bras. Zootec., 44: 269–275.10.1590/S1806-92902015000800001
Olier B.S., Tubin J.S., de Mello G.L., Martınez-Porchas M., Emerenciano M.G. (2020). Does vertical substrate could influence the dietary protein level and zootechnical performance of the Pacific white shrimp Litopenaeus vannamei reared in a biofloc system? Aquac. Int., 28: 1227–1241.10.1007/s10499-020-00521-4
Otoshi C.A., Moss D.R., Moss S.M. (2011). Growth-enhancing effect of pond water on four size classes of Pacific white shrimp, Litopenaeus vannamei. J. World Aquac. Soc., 42: 417–422.10.1111/j.1749-7345.2011.00482.x
Pierri V., Valter-Severino D., Goulart-de-Oliveira K., do Espırito-Santo C.M., Nascimento-Vieira F., Quadros-Seiffert W. (2015). Cultivation of marine shrimp in biofloc technology (BFT) system under different water alkalinities. Braz. J. Biol., 75: 558–564.10.1590/1519-6984.16213
Poli M.A., Martins M.A., Pereira S.A., Jesus G.F.A., Martins M.L., Mouriño J.L.P., Vieira F.N. (2021). Increasing stocking densities affect hemato-immunological parameters of Nile tilapia reared in an integrated system with Pacific white shrimp using biofloc technology. Aquaculture, 536: 73649710.1016/j.aquaculture.2021.736497
Rajkumar M., Pandey P., Aravind R., Vennila A., Bharti V., Purushothaman C. (2016). Effect of different biofloc system on water quality, biofloc composition and growth performance in Litopenaeus vannamei (Boone, 1931). Aquac. Res., 47: 3432–3444.10.1111/are.12792
Ray A.J., Leffler J.W., Browdy C.L. (2019). The effects of a conventional feed versus a fish-free feed and biofloc management on the nutritional and human sensory characteristics of shrimp (Litopenaeus vannamei). Aquac. Int., 27: 261–277.10.1007/s10499-018-0321-8
Rodrigues D.E., De Souza R.L., Girao P.J.M., Braga I.F.M., de Souza-Correia E. (2018). Culture of Nile tilapia in a biofloc system with different sources of carbon. Rev. Cienc. Agron., 49: 458–466.10.5935/1806-6690.20180052
Rodríguez-Olague D., Ponce-Palafox J.T., Castillo-Vargasmachuca S.G., Arambul-Munoz E., Santos R.G., Esparza-Leal H.M. (2021). Effect of nursery system and stocking density to produce juveniles of white leg shrimp Litopenaeus vannamei. Aquac. Rep., 20: 100709.10.1016/j.aqrep.2021.100709
Samocha T.M., Patnaik S., Speed M., Ali A.M., Burger J.M., Almeida R.V., Ayub Z., Harisanto M., Horowitz A., Brock D.L. (2007). Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquac. Eng., 36:184–191.10.1016/j.aquaeng.2006.10.004
Santacruz Reyes R.A., Chien Y.H. (2012). The potential of yucca schidigera extract to reduce the ammonia pollution from shrimp farming. Bioresour. Technol., 113: 311–314.10.1016/j.biortech.2012.02.132
Sarker M., Das S.K., Mondal B. (2019). Comparative efficiency of biofloc and feed based culture of common carp (Cyprinus carpio L.). Indian J. Anim. Hlth., 58: 203–212.10.36062/ijah.58.2.2019.203-212
Satanwat P., Tran T.P., Hirakata Y., Watari T., Hatamoto M., Yamaguchi T., Pungrasmia W., Powtongsookf S. (2020). Use of an internal fibrous biofilter for intermittent nitrification and denitrification treatments in a zero-discharge shrimp culture tank. Aquac. Eng., 88: 102041.10.1016/j.aquaeng.2019.102041
Shakir C., Lipton A.P., Manilal A., Sugathanand S., Selvin J. (2014). Effect of stocking density on the survival rate and growth performance in Penaeus monodon. J. Basic. Appl., 10: 231–238.10.6000/1927-5129.2014.10.32
Shrivastava V., Chadha N.K., Koya M.d., Lakra W.S., Sawant P.B., Remya S. (2017). Effect of stocking density on growth and survival of Fenneropenaeus merguiensis (de Man, 1888) post larvae. Int. J. Curr. Microbiol., 6(9): 1779–1789.10.20546/ijcmas.2017.609.220
Sivanandavel P., Soundarapandian P. (2010). Effect of stocking density on growth and survival of cage reared Indian white shrimp Penaeus indicus (H.Milne edwards) at vellar estuary. Asian J. Agric. Sci., 2: 1–4.10.4172/scientificreports.589
Sookying D., D’Silva F.S., Allen Davis D., Hanson T.R. (2011). Effects of stocking density on the performance of Pacific white shrimp Litopenaeus vannamei cultured under pond and outdoor tank conditions using a high soybean meal diet. Aquaculture, 319: 232–239.10.1016/j.aquaculture.2011.06.014
Tao C.T., Khanh L.V., Hai T.N., Viet L.Q., An C.M, Toan P.V., Nghi D.H., Viet H.V. (2019). Rearing larvae of the black tiger shrimp (Penaeus monodon) by biofloc technology at different stocking density]. Science Journal-Can Tho University 55(4B):64–71.
Tao C.T., Hai T.N., Terahara T., Hoa N.V. (2021). Influence of stocking density on survival and growth of larval and postlarval white leg shrimp (Litopenaeus vannamei Boone, 1931) applied biofloc technology. AACL Bioflux, 14(3): 1801–1810.
Wang X., Ma M., Dong S., Cao M. (2004). Effects of salinity and dietary carbohydrate levels on growth and energy budget of juvenile L.vannamei. J. Shellfish Res., 23: 231–236.
Wasielesky W., Froes C., Foes G., Krummenauer D., Lara G., Poersch L. (2013). Nursery of Litopenaeus vannamei reared in a biofloc system: The effect of stocking densities and compensatory growth. J. Shellfish Res., 32: 799–806.10.2983/035.032.0323
Xu W.J., Pan L.Q. (2012). Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture, 356: 147–152.10.1016/j.aquaculture.2012.05.022
Xu W.J., Pan L.Q. (2014). Evaluation of dietary protein level on selected parameters of immune and antioxidant systems, and growth performance of juvenile Litopenaeus vannamei reared in zero-water exchange biofloc-based culture tanks. Aquaculture, 426–427: 181–188.10.1016/j.aquaculture.2014.02.003
Yeganeh V., Sharifinia M., Mobaraki S., Dashtiannasab A., Aeinjamshid K., Borazjani J.M., Maghsoudloo T. (2020). Survey of survival rate and histological alterations of gills and hepatopancreas of the Litopenaeus vannamei juveniles caused by exposure of Margalefidinium/Cochlodinium polykrikoides isolated from the Persian Gulf. Harmful Algae, 97: 101856.10.1016/j.hal.2020.101856
Zhang K., Pan L., Chen W., Wang C. (2017). Effect of using sodium bicarbonate to adjust the pH to different levels on water quality, the growth and the immune response of shrimp Litopenaeus vannamei reared in zero-water exchange biofloc-based culture tanks. Aquac. Res., 48: 1194–1208.10.1111/are.12961
Zhu Z.M, Lin X.T, Pan J.X., Xu Z.N. (2016). Effect of cyclical feeding on compensatory growth, nitrogen and phosphorus budgets in juvenile Litopenaeus vannamei. Aquac. Res., 47: 283–289.10.1111/are.12490