Abdel-Tawwab M. (2011). Natural food selectivity changes with weights of Nile tilapia, Oreochromis niloticus (Linnaeus), reared in fertilized earthen ponds. J. Appl. Aquacult., 23: 58–66.10.1080/10454438.2011.549785
Adineh H., Naderi M., Khademi Hamidia M., Harsij M. (2019). Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density. Fish Shellfish Immunol., 95: 440–448.10.1016/j.fsi.2019.10.057
Ahmad I., Leya T., Saharan N., Asanaru Majeedkutty B.R., Rathore G., Gora A.H., Bhat I.A., Verma A.K. (2019). Carbon sources affect water quality and haemato-biochemical responses of Labeo rohita in zero-water exchange biofloc system. Aquacult. Res., 50: 2879–2887.10.1111/are.14241
Bakhshi F.H., Najdegerami E., Manaffr R., Tokmechi A., Rahmani Farah K., Shalizar Jalali A. (2018). Growth performance, haematology, antioxidant status, immune response and histology of common carp (Cyprinus carpio L.) fed bioflc grown on different carbon sources. Aquacult. Res., 49: 393–403.10.1111/are.13469
Becerril-Cortes D., Monroy-Dosta M., Emerenciano M., CastroMejia G., Sofia B., Bermudez S., Correa G.V. (2018). Effect on nutritional composition of produced bioflocs with different carbon sources (molasses, coffee waste and rice bran) in Biofloc system. Intern. J. Fish. Aquat. St., 6: 541–547.
Correia E., Wilkenfeld J., Morris T., Weic L., Prangnell D., Samocha T. (2014). Intensive nursery production of the Pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system. Aquacult. Eng., 59: 48–54.10.1016/j.aquaeng.2014.02.002
Crab R., Chielens B., Wille M., Bossier P., Verstraete W. (2010). The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquacult. Res., 41: 559–567.10.1111/j.1365-2109.2009.02353.x
Deng M., Chen J., Gou J., Hou J., Li D., He X. (2018). The effect of different carbon sources on water quality, microbial community and structure of biofloc systems. Aquaculture, 482: 103–110.10.1016/j.aquaculture.2017.09.030
Durigon E.G., Lazzari R., Uczay J., de Alcântara Lopes D.L., Jerônimo G.T., Sgnaulin T., Emerenciano M.G.C. (2020). Biofloc technology (BFT): adjusting the levels of digestible protein and digestible energy in diets of Nile tilapia juveniles raised in brackish water. Aquacult. Fish, 5: 42–51.10.1016/j.aaf.2019.07.001
Ekasari J., Rivandi D., Firdausi A., Surawidjaja E., Zairin M., Bossier P., De Schryver P. (2015). Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture, 441: 72–77.10.1016/j.aquaculture.2015.02.019
Fleckenstein L.J., Kring N.A., Tierney T.W., Fisk J.C., Lawson B.C., Ray A.J. (2020). The effects of artificial substrate and stocking density on Pacific white shrimp (Litopenaeus vannamei) performance and water quality dynamics in high tunnel-based biofloc systems. Aquacult. Eng., 90: 102093.10.1016/j.aquaeng.2020.102093
García-Ríos L., Miranda-Baeza A., Coelho-Emerenciano M.G., Huerta-Rábago J.A., Osuna-Amarillas P. (2019). Biofloc technology (BFT) applied to tilapia fingerlings production using different carbon sources: emphasis on commercial applications. Aquaculture, 502: 26–31.10.1016/j.aquaculture.2018.11.057
Hoang M.N., Nguyen P.N., Bossier P. (2020). Water quality, animal performance, nutrient budgets and microbial community in the biofloc-based polyculture system of white shrimp, Litopenaeus vannamei and gray mullet, Mugil cephalus. Aquaculture, 515: 734610.10.1016/j.aquaculture.2019.734610
Hostins B., Braga A., Lopes D., Wasielesky W., Poersch L. (2015). Effect of temperature on nursery and compensatory growth of pink shrimp Farfantepenaeus brasiliensis reared in a superintensive biofloc system. Aquacult. Eng., 66: 62–67.10.1016/j.aquaeng.2015.03.002
Ju Z.Y., Forster I., Conquest L., Dominy W., Kuo W.C., David Horgen F. (2008). Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquacult. Res., 39: 118–133.10.1111/j.1365-2109.2007.01856.x
Khanjani M.H., Sharifinia M. (2020). Biofloc technology as a promising tool to improve aquaculture production. Rev. Aquacult., 12: 1836–1850.10.1111/raq.12412
Khanjani M.H., Sajjadi M.M., Alizadeh M., Sourinejad I. (2017). Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquacult. Res., 48: 1491–1501.10.1111/are.12985
Khanjani M.H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021 a). Biofloc system applied to Nile tilapia (Oreochromis niloticus) farming using different carbon sources: Growth performance, carcass analysis, digestive and hepatic enzyme activity. Iran. J. Fish. Sci., 20: 490–513.
Khanjani M.H, Alizadeh M., Sharifinia M. (2021 b). Effects of different carbon sources on water quality, biofloc quality, and growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in a heterotrophic culture system. Aquacult. Int., 29: 307–321.10.1007/s10499-020-00627-9
Khanjani M.H., Sharifinia M., Hajirezaee S. (2022). Recent progress towards the application of bioflc technology for tilapia farming. Aquaculture, 552: 738021.10.1016/j.aquaculture.2022.738021
Lopez-Elias J., Moreno-Arias A., Miranda-Baeza A., Martinez Cordova L., Rivas-Vega M., Marquez-Rios E. (2015). Proximate composition of bioflocs in culture systems containing hybrid red tilapia fed diets with varying levels of vegetable meal inclusion. North Amer. J. Aquacult., 77: 102–109.10.1080/15222055.2014.963767
Mansour A.T., Estebanb M.A. (2017). Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol., 64: 202–209.10.1016/j.fsi.2017.03.025
Martinez-Porchas M., Ezquerra-Brauer M., Mendoza-Cano F., Chan Higuera J.E., Vargas-Albores F., Martinez-Cordova L.R. (2020). Effect of supplementing heterotrophic and photoautotrophic biofloc, on the production response, physiological condition and post-harvest quality of the whiteleg shrimp, Litopenaeus vannamei. Aquacult. Rep., 16: 100257.10.1016/j.aqrep.2019.100257
Miao S., Hu J., Wan W., Han B., Zhou Y., Xin Z., Sun L. (2020). Biofloc technology with addition of different carbon sources altered the antibacterial and antioxidant response in Macrobrachium rosenbergii to acute stress. Aquaculture, 525: 735280.10.1016/j.aquaculture.2020.735280
Minabi K., Sourinejad I., Alizadeh M., Ghatrami R.E., Khanjani H.M. (2020). Effects of different carbon to nitrogen ratios in the biofloc system on water quality, growth, and body composition of common carp (Cyprinus carpio L.) fingerlings. Aquacult. Int., 28: 1883–1898.10.1007/s10499-020-00564-7
Mirzakhani N., Ebrahimi E., Jalali S.A.H., Ekasari J. (2019). Growth performance, intestinal morphology and nonspecific immunity response of Nile tilapia (Oreochromis niloticus) fry cultured in biofloc systems with different carbon sources and input C:N ratios. Aquaculture, 512: 734235.10.1016/j.aquaculture.2019.734235
Najdegerami E.H., Bakhshi F., Lakani F.B. (2016). Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zerowater exchange system. Fish Physiol. Biochem., 42: 457–465.10.1007/s10695-015-0151-9
Nunes Caldini N., De Holanda Cavalcante D., Rocha Filho P.R.N., Carmo e Sá M.V. (2015). Feeding Nile tilapia with artificial diets and dried bioflocs biomass. Acta Scient., 37: 335–341.10.4025/actascianimsci.v37i4.27043
Panigrahi A., Saranya C., Sundaram M., Vinoth Kannan S.R., Das R.R., Kumar R.S., Rajesh P., Otta S.K. (2018). Carbon: nitrogen (C:N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp (Litopenaeus vannamei) in biofloc based culture system. Fish Shellfish Immunol., 81: 329–337.10.1016/j.fsi.2018.07.035
Rajkumar M., Pandey P.K., Aravind R., Vennila A., Bharti V., Purushothaman C.S. (2016). Effect of different biofloc system on water quality, biofloc composition and growth performance in Litopenaeus vannamei (Boone, 1931). Aquac. Res., 47: 3432–3444.10.1111/are.12792
Suita S.M., Ballester E.L.C., Abreu P.C., Wasielesky W. Jr. (2015). Dextrose as carbon source in the culture of Litopenaeus vannamei (Boone, 1931) in a zero exchange system. Lat. Amer. J. Aquat. Res., 43: 526–533.10.3856/vol43-issue3-fulltext-13
Venkat H.K., Sahu N.P., Jain K.K. (2004). Effct of feeding Lactobacillus-based probiotics on the gut microflra, growth and survival of postlarvae of Macrobrachium rosenbergii (de Man). Aquacult. Res., 35: 501–507.10.1111/j.1365-2109.2004.01045.x
Wang G., Yu E., Xie J., Yu D., Li Z., Luo W., Qiu L., Zheng Z. (2015). Effect of C:N ratio on water quality in zero-water exchange tanks and the biofloc supplementation in feed on the growth performance of crucian carp, Carassius auratus. Aquaculture, 443: 98– 104.10.1016/j.aquaculture.2015.03.015
Wei Y., Liao S., Wang A. (2016). The effect of different carbon sources on the nutritional composition, microbial community and structure of bioflocs. Aquaculture, 465: 88–93.10.1016/j.aquaculture.2016.08.040
Xu W.J., Morris T.C., Samocha T.M. (2016). Effects of C:N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture, 453: 169–175.10.1016/j.aquaculture.2015.11.021