Have a personal or library account? Click to login
Effect of dietary β-Mannanase addition on performance, pododermatitis, and intestinal morphology as well as digesta Clostridium perfringens in broiler chickens: a pilot study Cover

Effect of dietary β-Mannanase addition on performance, pododermatitis, and intestinal morphology as well as digesta Clostridium perfringens in broiler chickens: a pilot study

Open Access
|Jul 2022

References

  1. Abd El-Wahab A., Beineke A., Beyerbach M., Visscher C., Kamphues J. (2011). Effects of floor heating and litter quality on the development and severity of foot pad dermatitis in young turkeys. Avian Dis., 55: 429–434.10.1637/9684-021011-Reg.1
  2. Abd El-Wahab A., Visscher C., Beineke A., Beyerbach M., Kamphues J. (2013). Effects of high electrolyte contents in the diet and using floor heating on development and severity of foot pad dermatitis in young turkeys. J. Anim. Physiol. Anim. Nutr., 97: 39–47.10.1111/j.1439-0396.2011.01240.x
  3. Abd El-Wahab A., Lingens J.B., Chuppava B., Ahmed M.F., Osman A., Langeheine M., Brehm R., Taube V., Grone R.,Von Felde A. (2020). Impact of rye inclusion in diets for broilers on performance, litter quality, foot pad health, digesta viscosity, organ traits and intestinal morphology. Sustainability, 12: 7753.10.3390/su12187753
  4. Adeola O., Cowieson A. (2011). Board-invited review: opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J. Anim. Sci., 89: 3189–3218.10.2527/jas.2010-3715
  5. Adibmoradi M., Navidshad B., Seifdavati J., Royan M. (2006). Effect of dietary garlic meal on histological structure of small intestine in broiler chickens. J. Poultry Sci., 43: 378–383.10.2141/jpsa.43.378
  6. Almirall M., Francesch M., Perez-Vendrell A.M., Brufau J., Esteve-Garcia E. (1995). The differences in intestinal viscosity produced by barley and β-glucanase alter digesta enzyme activities and ileal nutrient digestibilities more in broiler chicks than in cocks. J. Nutr., 125: 947–955.
  7. Animal Welfare Regulation Governing Experimental Animals of 1st August, 2013 (Federal Law Gazette [BGBl]. I pp. 3125, 3126), amended by Article 6 of the Regulation of 12th December, 2013, BGBl. I p. 4145.
  8. Arsenault R., Lee J., Latham R., Carter B., Kogut M. (2017). Changes in immune and metabolic gut response in broilers fed β-mannanase in β-mannan-containing diets. Poultry Sci., 96: 4307–4316.10.3382/ps/pex246
  9. Attia Y.A., Al-Khalaifah H., El-Hamid A., Al-Harthi M., El-Shafey A. (2020 a). Effect of different levels of multienzymes on immune response, blood hematology and biochemistry, antioxidants status and organs histology of broiler chicks fed standard and low-density diets. Front. Vet. Sci., 6: 510.10.3389/fvets.2019.00510701516632195272
  10. Attia Y.A., El-kelawy M., Al-Harthi M., El-Shafey A. (2020 b). Impact of multienzymes dose supplemented continuously or intermittently in drinking water on growth performance, nutrient digestibility, and blood constituents of broiler chickens. Animals, 10: 375.10.3390/ani10030375714335532111009
  11. Attia Y.A., Bovera F., Al-Harthi M.A., El-Din A.E.-R.E.T., Said Selim W. (2021). Supplementation of microbial and fungal phytases to low protein and energy diets: Effects on productive performance, nutrient digestibility, and blood profiles of broilers. Agriculture, 11: 414.10.3390/agriculture11050414
  12. Austin S., Wiseman J., Chesson A. (1999). Influence of non-starch polysaccharides structure on the metabolisable energy of UK wheat fed to poultry. J. Cereal Sci., 29: 77–88.10.1006/jcrs.1998.0213
  13. Bedford M., Apajalahti J. (2001). Implications of diet and enzyme supplementation on the microflora of the intestinal tract. In: Advances in nutritional technology 2001. Proc. 1st World Feed Conference, Utrecht, Netherlands, 7-8.11.2001.
  14. Bedford M., Morgan A. (1996). The use of enzymes in poultry diets. World. Poultry Sci. J., 52: 61–68.10.1079/WPS19960007
  15. Bunte S., Keller B., Chuppava B., Kamphues J., Visscher C., Abd El-Wahab A. (2020). Influence of fermented diets on in vitro survival rate of some artificially inoculated pathogens-a preliminary study. Processes, 8: 1345.10.3390/pr8111345
  16. Cengız Ö., Hess J., Bilgili S. (2012). Feed enzyme supplementation does not ameliorate foot pad dermatitis in broiler chickens fed on a corn-soyabean diet. Brit. Poultry Sci., 53: 401–407.10.1080/00071668.2012.711467
  17. Cho J., Kim I. (2013). Effects of beta-mannanase supplementation in combination with low and high energy dense diets for growing and finishing broilers. Livest. Sci., 154: 137– 143.10.1016/j.livsci.2013.03.004
  18. Choct M., Annison G. (1992). Anti-nutritive effect of wheat pentosans in broiler chickens: Roles of viscosity and gut microflora. Brit. Poultry Sci., 33: 821–834.10.1080/00071669208417524
  19. Choct M., Dersjant-Li Y., Mcleish J., Peisker M. (2010). Soy oligosaccharides and soluble non-starch polysaccharides: a review of digestion, nutritive and anti-nutritive effects in pigs and poultry. Asian Australas. J. Anim. Sci., 23: 1386–1398.10.5713/ajas.2010.90222
  20. Council Regulation (EC) No 1099/2009 of 24 September 2009 on the protection of animals at the time of killing. L. 303: 1–30.
  21. Dahiya J., Hoehler D., Wilkie D., Van Kessel A., Drew M. (2005). Dietary glycine concentration affects intestinal Clostridium perfringens and lactobacilli populations in broiler chickens. Poultry Sci., 84: 1875–1885.10.1093/ps/84.12.1875
  22. Dahiya J., Wilkie D., Van Kessel A., Drew M. (2006). Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era. Anim. Feed Sci. Technol., 129: 60–88.10.1016/j.anifeedsci.2005.12.003
  23. Daskiran M., Teeter R., Fodge D., Hsiao H. (2004). An evaluation of endo-β-D-mannanase (Hemicell) effects on broiler performance and energy use in diets varying in β-mannan content. Poultry Sci., 83: 662–668.10.1093/ps/83.4.662
  24. De Brito M.S., De Oliveira C.F.S., Da Silva T.R.G., De Lima R.B., Morais S.N., Da Silva J.H.V. (2008). Polissacarídeos não amiláceos na nutrição de monogástricos – revisão. Acta Vet. Bras., 2: 111–117.
  25. Dhawan S., Kaur J. (2007). Microbial mannanases: an overview of production and applications. Crit. Rev. Biotechnol., 27: 197–216.10.1080/07388550701775919
  26. Drew M., Syed N., Goldade B., Laarveld B., Van Kessel A. (2004). Effects of dietary protein source and level on intestinal populations of Clostridium perfringens in broiler chickens. Poultry Sci., 83: 414–420.10.1093/ps/83.3.414
  27. Eichner G., Vieira S., Torres C., Coneglian J., Freitas D., Oyarzabal O. (2007). Litter moisture and footpad dermatitis as affected by diets formulated on an all-vegetable basis or having the inclusion of poultry by-product. J. Appl. Poultry Res., 16: 344–350.10.1093/japr/16.3.344
  28. Engberg R., Hedemann M., Leser T., Jensen B. (2000). Effect of zinc bacitracin and salinomycin on intestinal microflora and performance of broilers. Poultry Sci., 79: 1311– 1319.10.1093/ps/79.9.1311
  29. Ferreira H. Jr, Hannas M., Albino L., Rostagno H., Neme R., Faria B., Xavier M. Jr, Rennó L. (2016). Effect of the addition of β-mannanase on the performance, metabolizable energy, amino acid digestibility coefficients, and immune functions of broilers fed different nutritional levels. Poultry Sci., 95: 1848–1857.10.3382/ps/pew076
  30. Francesch M., Brufau J. (2004). Nutritional factors affecting excreta/litter moisture and quality. World. Poultry Sci. J., 60: 64–75.10.1079/WPS20035
  31. Ghayour-Najafabadi P., Khosravinia H., Gheisari A., Azarfar A., Khanahmadi M. (2018). Productive performance, nutrient digestibility and intestinal morphometry in broiler chickens fed corn or wheat-based diets supplemented with bacterial-or fungal-originated xylanase. Ital. J. Anim. Sci., 17: 165–174.10.1080/1828051X.2017.1328990
  32. Hafez M.H., Attia Y.A. (2020). Challenges to the poultry industry: Current perspectives and strategic future after the COVID-19 outbreak. Front. Vet. Sci., 7: 516.10.3389/fvets.2020.00516
  33. Hansen M.V., Elliott L.P. (1980). New presumptive identification test for Clostridium perfringens: reverse CAMP test. J. Clin. Microbiol., 12: 617–619.10.1128/jcm.12.4.617-619.1980
  34. Hofacre C.L., Smith J.A., Mathis G.F. (2018). An optimist’s view on limiting necrotic enteritis and maintaining broiler gut health and performance in today’s marketing, food safety, and regulatory climate. Poultry Sci., 97: 1929–1933.10.3382/ps/pey082
  35. Hsiao H.-Y., Anderson D., Dale N. (2006). Levels of β-mannan in soybean meal. Poultry Sci., 85: 1430–1432.10.1093/ps/85.8.1430
  36. Iji P., Saki A., Tivey D. (2001). Body and intestinal growth of broiler chicks on a commercial starter diet. Intestinal weight and mucosal development. Brit. Poultry Sci., 42: 505–513.10.1080/00071660120073151
  37. Jackson M., Anderson D., Hsiao H., Mathis G., Fodge D. (2003). Beneficial effect of β-mannanase feed enzyme on performance of chicks challenged with Eimeria sp. and Clostridium perfringens. Avian Dis., 47: 759–763.10.1637/7024
  38. Jia W., Slominski B.A., Bruce H.L., Nyachoti C.M., Jones R.O. (2009). Enzyme addition facilitates the post-disease compensatory growth of broiler chickens challenged with Clostridium perfringens. Can. J. Anim. Sci., 89: 369–381.10.4141/CJAS09017
  39. Karimi K., Zhandi M. (2015). The effect of β-mannanase and β-glucanase on small intestine morphology in male broilers fed diets containing various levels of metabolizable energy. J. Appl. Anim. Res., 43: 324–329.10.1080/09712119.2014.978770
  40. Kim J.S., Hosseindoust A., Ju I.K., Yang X., Lee S.H., Noh H.S., Lee J.H., Chae B.J. (2018). Effects of dietary energy levels and β-mannanase supplementation in a high mannan-based diet during lactation on reproductive performance, apparent total tract digestibility and milk composition in multiparous sows. It. J. Anim. Sci., 17: 128–134.10.1080/1828051X.2017.1345663
  41. Knudsen K.E.B. (1997). Carbohydrate and lignin contents of plant materials used in animal feeding. Anim. Feed Sci. Technol., 67: 319–338.10.1016/S0377-8401(97)00009-6
  42. Knudsen K.E.B. (2014). Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets. Poultry Sci., 93: 2380–2393.10.3382/ps.2014-03902
  43. Kong C., Lee J., Adeola O. (2011). Supplementation of β-mannanase to starter and grower diets for broilers. Can. J. Anim. Sci., 91: 389–397.10.4141/cjas10066
  44. Langhout D., Schutte J., De Jong J., Sloetjes H., Verstegen W., Tamminga S. (2000). Effect of viscosity on digestion of nutrients in conventional and germ-free chicks. Brit. J. Nutr., 83: 533–540.10.1017/S0007114500000672
  45. Latham R., Williams M., Walters H., Carter B., Lee J. (2018). Efficacy of β-mannanase on broiler growth performance and energy utilization in the presence of increasing dietary galactomannan. Poultry Sci., 97: 549–556.10.3382/ps/pex309
  46. Latorre J.D., Hernandez-Velasco X., Kuttappan V.A., Wolfenden R.E., Vicente J.L., Wolfenden A.D., Bielke L.R., Prado-Rebolledo O.F., Morales E., Hargis B.M. (2015). Selection of Bacillus spp. for cellulase and xylanase production as direct-fed microbials to reduce digesta viscosity and Clostridium perfringens proliferation using an in vitro digestive model in different poultry diets. Front. Vet. Sci., 2: 25.10.3389/fvets.2015.00025
  47. Lee J., Bailey C., Cartwright A. (2003). β-Mannanase ameliorates viscosity-associated depression of growth in broiler chickens fed guar germ and hull fractions. Poultry Sci., 82: 1925–1931.10.1093/ps/82.12.1925
  48. Lee J., Connor-Appleton S., Bailey C., Cartwright A. (2005). Effects of guar meal byproduct with and without beta-mannanase hemicell on broiler performance. Poultry Sci., 84: 1261–1267.10.1093/ps/84.8.1261
  49. Mayne R., Else R., Hocking P. (2007). High litter moisture alone is sufficient to cause footpad dermatitis in growing turkeys. Brit. Poultry Sci., 48: 538–545.10.1080/00071660701573045
  50. Mcdevitt R., Brooker J., Acamovic T., Sparks N. (2006). Necrotic enteritis; a continuing challenge for the poultry industry. World. Poultry Sci. J., 62: 221–247.10.1079/WPS200593
  51. Montagne L., Pluske J., Hampson D. (2003). A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young nonruminant animals. Anim. Feed Sci. Technol., 108: 95–117.10.1016/S0377-8401(03)00163-9
  52. Moreira L. (2008). An overview of mannan structure and mannan-degrading enzyme systems. Appl. Microbiol. Biotechnol., 79: 165–178.10.1007/s00253-008-1423-4
  53. Nagaraj M., Wilson C., Saenmahayak B., Hess J., Bilgili S. (2007). Efficacy of a litter amendment to reduce pododermatitis in broiler chickens. J. Appl. Poultry Res., 16: 255– 261.10.1093/japr/16.2.255
  54. Naumann C., Bassler R. (2012). Methoden der landwirtschaftlichen Forschungs-und Untersuchungsanstalt, Biochemische Untersuchung von Futtermitteln. Methodenbuch III (einschließlich der achten Ergänzungen). VDLUFA, Darmstadt, Germany.
  55. Okamoto R. (2011). Epithelial regeneration in inflammatory bowel diseases. Inflamm. Regen., 31: 275–281.10.2492/inflammregen.31.275
  56. Ouhida I., Perez J., Piedrafita J., Gasa J. (2000). The effects of sepiolite in broiler chicken diets of high, medium and low viscosity. Productive performance and nutritive value. Anim. Feed Sci. Technol., 85: 183–194.10.1016/S0377-8401(00)00148-6
  57. Rehman Z., Aziz T., Bhatti S., Ahmad G., Kamran J., Umar S., Meng C., Ding C. (2016). Effect of β-mannanase on the performance and digestibility of broilers. Asian J. Anim. Vet. Adv., 11: 393–398.10.3923/ajava.2016.393.398
  58. Saki A., Mazugi M., Kamyab A. (2005). Effect of mannanase on broiler performance, ileal and in-vitro protein digestibility, uric acid and litter moisture in broiler feeding. Int. J. Poult. Sci., 4: 21–26.10.3923/ijps.2005.21.26
  59. Scapini L., De Cristo A., Schmidt J., Buzim R., Nogueira L., Palma S., Fernandes J. (2019). Effect of β-mannanase supplementation in conventional diets on the performance, immune competence and intestinal quality of broilers challenged with Eimeria sp. J. Appl. Poultry Res., 28: 1048–1057.10.3382/japr/pfz066
  60. Sharifi S., Golestani G., Yaghobfar A., Khadem A., Pashazanussi H. (2013). Effects of supplementing a multienzyme to broiler diets containing a high level of wheat or canola meal on intestinal morphology and performance of chicks. J. Appl. Poultry Res., 22: 671– 679.10.3382/japr.2011-00452
  61. Shastak Y., Ader P., Feuerstein D., Ruehle R., Matuschek, M. (2015). ß-Mannan and mannanase in poultry nutrition. World. Poultry Sci. J., 71: 161–174.10.1017/S0043933915000136
  62. Shepherd E., Fairchild B. (2010). Footpad dermatitis in poultry. Poultry Sci., 89: 2043– 2051.10.3382/ps.2010-00770
  63. Sun Q., Liu D., Guo S., Chen Y., Guo Y. (2015). Effects of dietary essential oil and enzyme supplementation on growth performance and gut health of broilers challenged by Clostridium perfringens. Anim. Feed Sci. Technol., 207: 234–244.10.1016/j.anifeedsci.2015.06.021
  64. Van Der Hoeven-Hangoor E., Van De Linde I., Paton N., Verstegen M., Hendriks W. (2013). Effect of different magnesium sources on digesta and excreta moisture content and production performance in broiler chickens. Poultry Sci., 92: 382–391.10.3382/ps.2012-02404
  65. Van der Klis J.D., de Lange L. (2013). Water intake in poultry. Proc. 19th Europ. Poultry Nutr. Symp., Postdam, Germany, pp. 102–107.
  66. Yasar S., Forbes J. (2000). Enzyme supplementation of dry and wet wheat-based feeds for broiler chickens: performance and gut responses. Brit. J. Nutr., 84: 297–307.10.1017/S0007114500001574
  67. Youssef I., Beineke A., Rohn K., Kamphues J. (2011). Effects of litter quality (moisture, ammonia, uric acid) on development and severity of foot pad dermatitis in growing turkeys. Avian Dis., 55: 51–58.10.1637/9495-081010-Reg.1
  68. Zou X., Qiao X., Xu Z. (2006). Effect of β-mannanase (Hemicell) on growth performance and immunity of broilers. Poultry Sci., 85: 2176–2179.10.1093/ps/85.12.2176
  69. Zulkifli I., Al-Aqil A., Omar A., Sazili A., Rajion M. (2009). Crating and heat stress influence blood parameters and heat shock protein 70 expression in broiler chickens showing short or long tonic immobility reactions. Poultry Sci., 88: 471–476.10.3382/ps.2008-00287
DOI: https://doi.org/10.2478/aoas-2022-0023 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1027 - 1039
Submitted on: Dec 14, 2021
Accepted on: Feb 18, 2022
Published on: Jul 19, 2022
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Amr Abd El-Wahab, Marwa Fawzy ElMetwaly Ahmed, Bernd Reckels, Benjamin Schiel, Christian Visscher, Josef Kamphues, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.