Have a personal or library account? Click to login

Rapeseed meal as a feed component in monogastric animal nutrition – a review

Open Access
|Oct 2022

References

  1. Adewole D.I., Rogiewicz A., Dyck B., Slominski B.A. (2016). Chemical and nutritive characteristics of canola meal from Canadian processing facilities. Anim. Feed Sci. Technol., 222: 17–30.10.1016/j.anifeedsci.2016.09.012
  2. Adhikari P.A., Heo J.M., Nyachoti C.M. (2015). True and standardized total tract phosphorus digestibility in canola meals from Brassica napus black and Brassica juncea yellow fed to growing pigs. J. Anim. Sci., 93: 209–216.10.2527/jas.2014-7569
  3. Aider A., Barbana C. (2011). Canola proteins: composition, extraction, functional properties, bioactivity, applications as a food ingredient and allergenicity – a practical and critical review. Trends Food Sci. Technol., 22: 21–39.10.1016/j.tifs.2010.11.002
  4. Aljuobori A., Abdullah N., Zulkifli I., Soleimani A.F., Liang J.B., Oskoueian E. (2014). Lactobacillus salivarius fermentation reduced glucosinolate and fibre in canola meal. J. Food Res., 3: 95.10.5539/jfr.v3n5p95
  5. Almeida F.N., Htoo J.K., Thomson J., Stein H.H. (2014). Effects of heat treatment on the apparent and standardized ileal digestibility of amino acids in canola meal fed to growing pigs. Anim. Feed Sci. Technol., 187: 44–52.10.1016/j.anifeedsci.2013.09.009
  6. Amarowicz R., Naczk M., Shahidi F. (2000). Antioxidant activity of crude tannins of canola and rapeseed hulls. J. Am. Oil Chem. Soc., 77: 957.10.1007/s11746-000-0151-0
  7. Ashayerizadeh A., Dastar B., Shargh M.S., Mahoonak A.S., Zerehdaran S. (2017). Fermented rapeseed meal is effective in controlling Salmonella enterica serovar Typhimurium infection and improving growth performance in broiler chicks. Vet. Microbiol., 201: 93–102.10.1016/j.vetmic.2017.01.007
  8. Ashayerizadeh A., Dastar B., Shargh M.S., Mahoonak A.S., Zerehdaran S. (2018). Effects of feeding fermented rapeseed meal on growth performance, gastrointestinal microflora population, blood metabolites, meat quality, and lipid metabolism in broiler chickens. Livest. Sci., 216: 183–190.10.1016/j.livsci.2018.08.012
  9. Ayton J. (2014). Variability of quality traits in canola seed, oil and meal – a review. NSW Department of Primary Industries, New South Wales, Australia.
  10. Banaszkiewicz T. (2000). Effects of rapeseed processing methods on protein content and amino acids composition. Oliseed Crops, 21: 315–322.
  11. Banaszkiewicz T. (2011). Nutritional value of soybean meal. In: Soybean and Nutrition, El-Shemy H. (ed.). InTech, available: https://www.intechopen.com/books/soybean-and-nutrition/nutritional-value-of-soybean-meal.10.5772/23306
  12. Barros F., Awika J.M., Rooney L.W. (2012). Interaction of tannins and other sorghum phenolic compounds with starch and effects on in vitro starch digestibility. J. Agric. Food Chem., 60: 11609–11617.10.1021/jf3034539
  13. Bell J.M. (1993). Factors affecting the nutritional value of canola meal: A review. Can. J. Anim. Sci., 73: 679–697.10.4141/cjas93-075
  14. Berrocoso J.D., Rojas O.J., Liu Y., Shoulders J., González-Vega J.C., Stein H.H. (2015). Energy concentration and amino acid digestibility in high-protein canola meal, conventional canola meal, and soybean meal fed to growing pigs. J. Anim. Sci., 93: 2208–2217.10.2527/jas.2014-8528
  15. Beszterda M., Nogala-Kałucka M. (2019). Current research developments on the processing and improvement of the nutritional quality of rapeseed (Brassica napus L.). Eur. J. Lipid Sci. Technol., 121: 1800045.10.1002/ejlt.201800045
  16. Bérot S., Compoint J.P., Larré C., Malabat C., Guéguen J. (2005). Large scale purification of rapeseed proteins (Brassica napus L.). J. Chromatogr. B., 818: 35–42.10.1016/j.jchromb.2004.08.001
  17. Bjerg B., Eggum B.O., Jacobsen I., Otte J., Sørensen H. (1989). Antinutritional and toxic effects in rats of individual glucosinolates (±myrosinases) added to a standard diet (2). J. Anim. Physiol. Anim. Nutr., 61: 227–244.10.1111/j.1439-0396.1989.tb00105.x
  18. Bojanowska M. (2017). Changes in chemical composition of rapeseed meal during storage, influencing nutritional value of its protein and lipid fractions. J. Anim. Feed Sci., 26: 157–164.10.22358/jafs/74292/2017
  19. Brzóska F., Śliwiński B., Michalik-Rutkowska O. (2010). Rapeseed feed – a place in the country’s protein balance and nutritional value (in Polish). Part 1. Wiad. Zoot., 48: 2–3.
  20. Campbell L., Rempel C.B., Wanasundara J.P. (2016). Canola/rapeseed protein: Future opportunities and directions – Workshop proceedings of IRC 2015. Plants, 5: 17.10.3390/plants5020017
  21. Carré P., Citeau M., Robin G., Estorges M. (2016). Hull content and chemical composition of whole seeds, hulls and germs in cultivars of rapeseed (Brassica napus). OCL, 23: A302.10.1051/ocl/2016013
  22. Chachaj R. (2020). Stimulation of the immune and antioxidative system of chickens and turkeys fed with feed with fermented soybean meal (in Polish). Doctoral thesis, University of Life Sciences in Lublin.
  23. Chibowska M., Smulikowska S., Pastuszewska B. (2000). Metabolisable energy value of rapeseed meal and its fractions for chickens as affected by oil and fibre content. J. Anim. Feed Sci., 9: 371–378.10.22358/jafs/68054/2000
  24. Czech A., Kiesz M., Kłos S. (2019). The effectiveness of fermented rapeseed meal in sows feeding (in Polish). Doi: 10.36359/scivp.2019-20-2.52.10.36359/scivp.2019-20-2.52
  25. Czerwiński J., Smulikowska S., Mieczkowska A., Konieczka P., Piotrowska A., Bartkowiak-Broda I. (2012). The nutritive value and phosphorus availability of yellow-and dark-seeded rapeseed cakes and the effects of phytase supplementation in broilers. J. Anim. Feed Sci., 21: 677–695.10.22358/jafs/66140/2012
  26. del Carmen Martinez-Ballesta M., Carvajal M. (2015). Myrosinase in Brassicaceae: the most important issue for glucosinolate turnover and food quality. Phytochem. Rev., 14: 1045– 1051.10.1007/s11101-015-9430-4
  27. Dänicke S., Kracht W., Jeroch H., Zachmann R., Heidenreich E., Löwe R. (1998). Effect of different technical treatments of rapeseed on the feed value for broilers and laying hens. Arch. Anim. Nutr., 51: 53–62.10.1080/17450399809381905
  28. Dinkova-Kostova A.T., Kostov R.V. (2012). Glucosinolates and isothiocyanates in health and disease. Trends Mol. Med., 18: 337–347.10.1016/j.molmed.2012.04.003
  29. Egües I., Alriols M.G., Herseczki Z., Marton G., Labidi J. (2010). Hemicelluloses obtaining from rapeseed cake residue generated in the biodiesel production process. J. Ind. Eng. Chem., 16: 293–298.10.1016/j.jiec.2010.01.036
  30. Eklund M., Sauer N., Schöne F., Messerschmidt U., Rosenfelder P., Htoo J.K., Mosenthin R. (2015). Effect of processing of rapeseed under defined conditions in a pilot plant on chemical composition and standardized ileal amino acid digestibility in rapeseed meal for pigs. J. Anim. Sci., 93: 2813–2825.10.2527/jas.2014-8210
  31. Fang Z.F., Peng J., Liu Z.L., Liu Y.G. (2007). Responses of non-starch polysaccharide- degrading enzymes on digestibility and performance of growing pigs fed a diet based on corn, soya bean meal and Chinese double-low rapeseed meal. J. Anim. Physiol. Anim. Nutr., 91: 361–368.10.1111/j.1439-0396.2006.00664.x
  32. Fang Z.F., Liu Z.L., Dai J.J., Qian H.Y., Qi Z.L., Ma L.B., Peng J. (2009). Effects of enzyme addition on the nutritive value of broiler diets containing hulled or dehulled Chinese double-low rapeseed meals. J. Anim. Physiol. Anim. Nutr., 93: 467–476.10.1111/j.1439-0396.2008.00829.x
  33. Fazhi X., Lvmu L., Jiaping X., Kun Q., Zhide Z., Zhangyi L. (2011). Effects of fermented rapeseed meal on growth performance and serum parameters in ducks. Asian-Australas. J. Anim. Sci., 24: 678–684.10.5713/ajas.2011.10458
  34. Feng D., Zuo J. (2007). Nutritional and anti-nutritional composition of rapeseed meal and its utilization as a feed ingredient for animal. International Consultative Group for Research on Rapeseed, Wuhan, China, pp. 265–270.
  35. Feng D., Zuo J. (2015). Nutritional and anti-nutritional composition of rapeseed meal and its utilization as a feed ingredient for animal. Feed and Industrial Raw Material: Feed, pp. 265–270.
  36. Gołębiewska K. (2018). Yellow-seeded winter rapeseed as a source of protein and energy in feeding monogastric animals (in Polish). Doctoral thesis, Plant Breeding and Acclimatization Institute.
  37. Grela E.R. (2016). Plant protein concentrates in animal nutrition (in Polish). Wiad. Zoot., 54: 99–106.
  38. Grela E.R., Czech A. (2019). Feed alternative to genetically modified soy in animal nutrition (in Polish). Wiad. Zoot., 57: 66–77.
  39. Grela E.R., Czech A., Kiesz M., Wlazło Ł., Nowakowicz-Dębek B. (2019). A fermented rapeseed meal additive: Effects on production performance, nutrient digestibility, colostrum immunoglobulin content and microbial flora in sows. Anim. Nutr., 5: 373– 379.10.1016/j.aninu.2019.05.004
  40. Hanczakowska E., Świątkiewicz M. (2014). Legume seeds and rapeseed press cake as replacers of soybean meal in feed for fattening pigs. Ann. Anim. Sci., 14: 921–934.10.2478/aoas-2014-0068
  41. Hanczakowska E. (2009). Rapeseed feed in pig nutrition. In: Rapeseed feed in animal nutrition (in Polish). PSPO Publishing House, Warsaw, IV: 35–48.
  42. Hao Y., Wang Z., Zou Y., He R., Ju X., Yuan J. (2020). Effect of static-state fermentation on volatile composition in rapeseed meal. J. Sci. Food Agric., 100: 2145–2152.10.1002/jsfa.10238
  43. Harloff H.J., Emrani N., Jung C. (2014). High throughput screening for detecting EMS mutations in oilseed rape (Brassica napus L.). Tagungsband der 64. Jahrestagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs, 25–26.11.2013, Raumberg-Gumpenstein, 9.
  44. Hernacki B. (2007). Yellow rapeseed – current research over the world, main issues and problems (in Polish). Oilseed Crops, 27: 125–150.
  45. Hernacki B., Bartkowiak-Broda I., Piotrowska A., Cegielska-Taras T. (2009). A consideration on genetic mapping of QTL responsible for the yellow-seedness in winter rapeseed (Brassica napus L.). PBAI Bulletin, 253: 221–229.
  46. Hu Z.Y., Hua W., Zhang L., Deng L.B., Wang X.F., Liu G.H., Hao W.J., Wang H.Z. (2013). Seed structure characteristics to form ultrahigh oil content in rapeseed. PLoS One, 8: 1–10.10.1371/journal.pone.0062099
  47. Ishida M., Hara M., Fukino N., Kakizaki T., Morimitsu Y. (2014). Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breed. Sci., 64: 48–59.10.1270/jsbbs.64.48
  48. Ivanova P., Chalova V., Uzunova G., Koleva L., Manolov I. (2016). Biochemical characterization of industrially produced rapeseed meal as a protein source in food industry. Agric. Agric. Sci. Proc., 10: 55–62.10.1016/j.aaspro.2016.09.009
  49. Jeroch H., Jankowski J., Lipiec A., Kozłowski K., Matusevičius P., Mikołajczyk J., Schöne F. (2013). Rapeseed feed in animal nutrition. University of Warmia and Mazury in Olsztyn.
  50. Jędrusek-Golińska A., Korczak J., Kmiecik D., Hęś M., Gramza A. (2003). The use of protein isolates from defatted rapeseed meal for production of hydrolysates (in Polish). Oilseed Crops, 24: 701–708.
  51. Jia W., Mikulski D., Rogiewicz A., Zduńczyk Z., Jankowski J., Slominski B.A. (2012). Low-fiber canola. Part 2. Nutritive value of the meal. J. Agric. Food Chem., 60: 12231– 12237.10.1021/jf302118c
  52. Jiang J., Wang Y., Xie T., Rong H., Li A., Fang Y., Wang Y. (2015). Metabolic characteristics in meal of black rapeseed and yellow-seeded progeny of Brassica napus–Sinapis alba hybrids. Molecules, 20: 21204–21213.10.3390/molecules201219761
  53. Józefiak D., Ptak A., Kaczmarek S., Maćkowiak P., Sassek M., Slominski B.A. (2010). Multi-carbohydrase and phytase supplementation improves growth performance and liver insulin receptor sensitivity in broiler chickens fed diets containing full-fat rapeseed. Poultry Sci., 89: 1939–1946.10.3382/ps.2010-00694
  54. Ju X.R., Wang X.F., He R., Wang L.F., Yuan J. (2012). Optimization of rapeseed peptide production by mixed solid-state fermentation. Food Sci., 33: 231–236.
  55. Kaczmarek P., Korniewicz D., Lipiński K., Mazur M. (2016). Chemical composition of rapeseed products and their use in pig nutrition. Pol. J. Nat. Sci., 31: 545–562.
  56. Kamińska B., Brzóska F., Skraba B. (2000). High-protein fraction of 00 type rapeseed meal in broiler nutrition. J. Anim. Feed Sci., 9: 123–136.10.22358/jafs/68035/2000
  57. Kasprzak M.M., Houdijk J.G.M., Kightley S., Olukosi O.A., White G.A., Carré P., Wiseman J. (2016). Effects of rapeseed variety and oil extraction method on the content and ileal digestibility of crude protein and amino acids in rapeseed cake and softly processed rapeseed meal fed to broiler chickens. Anim. Feed Sci. Technol., 213: 90–98.10.1016/j.anifeedsci.2016.01.002
  58. Kasprzak M.M., Houdijk J.G.M., Olukosi O.A., Appleyard H., Kightley S.P.J., Carré P., Wiseman J. (2017). The influence of oil extraction process of different rapeseed varieties on the ileal digestibility of crude protein and amino acids in broiler chickens. Anim. Feed Sci. Technol., 227: 68–74.10.1016/j.anifeedsci.2017.03.009
  59. Khajali F., Slominski B.A. (2012). Factors that affect the nutritive value of canola meal for poultry. Poultry Sci., 91: 2564–2575.10.3382/ps.2012-02332
  60. Khattab R.Y., Arntfield S.D. (2009). Functional properties of raw and processed canola meal. LWT-Food Sci. Tech., 42: 1119–1124.10.1016/j.lwt.2009.02.009
  61. Khattak F.M., Pasha T.N., Hayat Z., Mahmud A. (2006). Enzymes in poultry nutrition. J. Anim. Plant Sci., 16: 1–7.
  62. Kiesz M.E. (2019). The effectiveness of fermented soybean meal and/or rapeseed meal in sows and weaners feeding (in Polish). Doctoral thesis, University of Life Sciences in Lublin.
  63. Kim K., Goel A., Lee S., Choi Y., Chae B.J. (2015). Comparative ileal amino acid digestibility and growth performance in growing pigs fed different level of canola meal. J. Anim. Sci. Technol., 57: 1–8.10.1186/s40781-015-0055-3
  64. Koreleski J., Świątkiewicz S. (2009). Rapeseed meal and cake in poultry nutrition. In: Rapeseed feed in animal nutrition (in Polish). PSPO Publishing House, Warsaw, IV: 27–34.
  65. Kozlowski K., Jeroch H. (2014). Enhancing the nutritional value of poultry feedstuffs using the example of rapeseed products – a review. Ann. Anim. Sci., 14: 245–256.10.2478/aoas-2014-0014
  66. Kozlowski K., Mikulski D., Rogiewicz A., Zduńczyk Z., Rad-Spice M., Jeroch H., Jankowski J., Slominski B.A. (2018). Yellow-seeded B. napus and B. juncea canola. Part 2. Nutritive value of the meal for turkeys. Anim. Feed Sci. Technol., 240: 102–116.10.1016/j.anifeedsci.2018.03.018
  67. Kuśnierek W., Potkański A., Kuśnierek S. (2005). Apparent ileal and total digestibility in pigs of protein and amino acids of rapeseed meal before and after extrusion at 140 and 160ºC (in Polish). Oilseed Crops, 26: 537–548.
  68. Li D., Pengbin X., Liming G., Shijun F., Canghai H. (2002). Determination of apparent ileal amino acid digestibility in rapeseed meal and cake processed at different temperatures using the direct and difference method with growing pigs. Arch. Anim. Nutr., 56: 339– 349.10.1080/00039420215629
  69. Li J., Chen L., Liang Y., Ye X., Liu L. (2003). Research commercial application of the complete dominance yellow seeded gene in Brassica napus L. Proc. 11th International Rapeseed Congress, 6–10.07.2003, Copenhagen, Denamrk, 1: 202–204.
  70. Li P., Wang F., Wu F., Wang J., Liu L., Lai C. (2015). Chemical composition, energy and amino acid digestibility in double-low rapeseed meal fed to growing pigs. J. Anim. Sci. Biotechnol., 6: 1–10.10.1186/s40104-015-0033-0
  71. Lipsa F.D., Snowdon R., Friedt W. (2007). Improving rapeseed meal quality by reduction of condensed tannins. Proc. 10th International Rapeseed Congress, 26–30.03.2007, Wuhan, China.
  72. Liu Y., Song M., Maison T., Stein H.H. (2014). Effects of protein concentration and heat treatment on concentration of digestible and metabolizable energy and on amino acid digestibility in four sources of canola meal fed to growing pigs. J. Anim. Sci., 92: 4466– 4477.10.2527/jas.2013-7433
  73. Liu Y., Jaworski N.W., Rojas O.J., Stein H.H. (2016). Energy concentration and amino acid digestibility in high protein canola meal, conventional canola meal, and in soybean meal fed to growing pigs. Anim. Feed Sci. Technol., 212: 52–62.10.1016/j.anifeedsci.2015.11.017
  74. Liu W.C., Lee S.I., Hong S.T., Jang Y.S., Kim I.H. (2018). Comparison of apparent total tract and ileal digestibility in growing and finishing pigs fed soybean meal, rapeseed meal, and canola meal. J. Appl. Anim. Res., 46: 55–59.10.1080/09712119.2016.1258364
  75. Łopaciuk W., Rola K., Dzwonkowski W. (2019). Situation on world markets of feed raw materials and industrial feed (in Polish). State Feed Market and Prospects, 5–17.
  76. Maison T., Stein H.H. (2014). Digestibility by growing pigs of amino acids in canola meal from North America and 00-rapeseed meal and 00-rapeseed expellers from Europe. J. Anim. Sci., 92: 3502–3514.10.2527/jas.2014-7748
  77. Maison T., Liu Y., Stein H.H. (2015). Apparent and standardized total tract digestibility by growing pigs of phosphorus in canola meal from North America and 00-rapeseed meal and 00-rapeseed expellers from Europe without and with microbial phytase. J. Anim. Sci., 93: 3494–3502.10.2527/jas.2015-9055
  78. Mansoori B., Rogiewicz A., Slominski B.A. (2015). The effect of canola meal tannins on the intestinal absorption capacity of broilers using a D-xylose test. J. Anim. Physiol. Anim. Nutr., 99: 1084–1093.10.1111/jpn.12320
  79. Manyeula F., Mlambo V., Marume U., Sebola N.A. (2019). Nutrient digestibility, haemo-biochemical parameters and growth performance of an indigenous chicken strain fed canola meal-containing diets. Trop. Anim. Health Prod., 51: 2343–2350.10.1007/s11250-019-01949-4
  80. Mejicanos G., Sanjayan N., Kim I.H., Nyachoti C.M. (2016). Recent advances in canola meal utilization in swine nutrition. J. Anim. Sci. Technol., 58: 7.10.1186/s40781-016-0085-5
  81. Mertens D.R. (2003). Challenges in measuring insoluble dietary fiber. J. Anim. Sci., 81: 3233–3249.10.2527/2003.81123233x
  82. Messad F., Létourneau-Montminy M.P., Charbonneau E., Sauvant D., Guay F. (2016). Meta-analysis of the amino acid digestibility of oilseed meal in growing pigs. Anim., 10: 1635–1644.10.1017/S1751731116000732
  83. Michaelsen S., Otte J., Simonsen L.O., Sørensen H. (1994). Absorption and degradation of individual intact glucosinolates in the digestive tract of rodents. Acta Agric. Scand. A Anim. Sci., 44: 25–37.10.1080/09064709409410178
  84. Mińkowski K., Krygier K. (1998). Influence of variety and size of rapeseeds on their physico-chemical characteristic (in Polish). Oilseed Crops, 19: 219–231.
  85. Mosenthin R., Messerschmidt U., Sauer N., Carré P., Quinsac A., Schöne F. (2016). Effect of the desolventizing/toasting process on chemical composition and protein quality of rapeseed meal. J. Anim. Sci. Biotechnol., 7: 1–12.10.1186/s40104-016-0095-7
  86. Mujić I., Šertović E., Jokić S., Sarić Z., Alibabić V., Vidović S., Živković J. (2011). Isoflavone content and antioxidant properties of soybean seeds. Croat. J. Food Sci. Technol., 3: 16–20.
  87. Mushtaq T., Sarwar M., Ahmad G., Mirza M.A., Nawaz H., Mushtaq M.H., Noreen U. (2007). Influence of canola meal-based diets supplemented with exogenous enzyme and digestible lysine on performance, digestibility, carcass, and immunity responses of broiler chickens. Poultry Sci., 86: 2144–2151.10.1093/ps/86.10.2144
  88. Myszka K., Boros D., Bartkowiak-Broda I. (2011). Comparison of chemical composition of rapeseed meals derived from winter rapeseed (Brassica napus L.) differing in colour of seeds (in Polish). Oilseed Crops, 32: 257–268.
  89. Naczk M., Amarowicz R., Sullivan A., Shahidi F. (1998). Current research developments on polyphenolics of rapeseed/canola: a review. Food Chem., 62: 489–502.10.1016/S0308-8146(97)00198-2
  90. Naczk M., Amarowicz R., Pink D., Shahidi F. (2000). Insoluble condensed tannins of canola/rapeseed. J. Agri. Food Chem., 48: 1758–1762.10.1021/jf9908401
  91. Nesi N., Delourme R., Brégeon M., Falentin C., Renard M. (2008). Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed. C.R. Biol., 331: 763– 771.10.1016/j.crvi.2008.07.018
  92. Newkirk R.W., Classen H.L., Edney M.J. (2003 a). Effects of prepress-solvent extraction on the nutritional value of canola meal for broiler chickens. Anim. Feed Sci. Technol., 104: 111–119.10.1016/S0377-8401(02)00331-0
  93. Newkirk R.W., Classen H.L., Scott T.A., Edney M.J. (2003 b). The digestibility and content of amino acids in toasted and non-toasted canola meals. Can. J. Anim. Sci., 83: 131–139.10.4141/A02-028
  94. Nia S.M., Ingalls J.R. (1992). Effect of heating on canola meal protein degradation in the rumen and digestion in the lower gastrointestinal tract of steers. Can. J. Anim. Sci., 72: 83–88.10.4141/cjas92-009
  95. Noblet J., Le Goff G. (2001). Effect of dietary fibre on the energy value of feed for pigs. Anim. Feed Sci. Technol., 90: 35–52.10.1016/S0377-8401(01)00195-X
  96. Ochodzki P., Rakowska M., Bjergegaard C., Sørensen H. (1995). Studies on enzyme based fractionation, chemical composition and biological effects of dietary fibres in rapeseed (Brassica napus L.). 1. Chemical composition of seeds and characteristics of soluble and insoluble dietary fibres of spring and winter type varieties of double low oilseed rape. J. Anim. Feed Sci., 4: 127–138.10.22358/jafs/69786/1995
  97. Ochodzki P. (1997). Chemical composition of rape seed fibre (in Polish). Proc. ‘Dietary fiber – chemical composition and biological action’, Radzików, 24–25.04.1997, pp.75–87.
  98. Osek M., Milczarek A. (2002). Natural and extruded rapeseed or flax seed in mixtures without animal protein for broiler chickens. Sci. Bull. Feed Ind., 1: 47–58.
  99. Parr C.K., Liu Y., Parsons C.M., Stein H.H. (2015). Effects of high-protein or conventional canola meal on growth performance, organ weights, bone ash, and blood characteristics of weanling pigs. J. Anim. Sci., 93: 2165–2173.10.2527/jas.2014-8439
  100. Pastuszewska B., Jabłecki G., Buraczewska L., Dakowski P., Taciak M., Matyjek R., Ochtabińska A. (2003). The protein value of differently processed rapeseed solvent meal and cake assessed by in vitro methods and in tests with rats. Anim. Feed Sci. Technol., 106: 175–188.10.1016/S0377-8401(03)00005-1
  101. Pastuszewska B., Raj S. (2003). Rapeseed oilmeal as protein and energy feedstuff – limitations and perspectives (in Polish). Oilseed Crops, 24: 525–536.
  102. Patyra E., Kowalczyk E., Kwiatek K. (2016). Anti-nutritional and health promoting properties of glucosinolates (in Polish). Vet. Life, 91: 516–520.
  103. Potapov D.A., Osipova G.M. (2004). Breeding of yellow seeded summer rapeseed (Brassica napus L.) in West Siberia. Oilseed Crops, 25: 51–60.
  104. Pudel F., Tressel R.P., Düring K. (2015). Production and properties of rapeseed albumin. Lipid Technol., 27: 112–114.10.1002/lite.201500023
  105. Pustjens A.M., Schols H.A., Kabel M.A., Gruppen H. (2013). Characterisation of cell wall polysaccharides from rapeseed (Brassica napus) meal. Carbohydr. Polym., 98: 1650– 1656.10.1016/j.carbpol.2013.07.059
  106. Qiao H., Classen H.L. (2003). Nutritional and physiological effects of rapeseed meal sinapine in broiler chickens and its metabolism in the digestive tract. J. Sci. Food Agric., 83: 1430–1438.10.1002/jsfa.1559
  107. Radfar M., Rogiewicz A., Slominski B.A. (2017). Chemical composition and nutritive value of canola-quality Brassica juncea meal for poultry and the effect of enzyme supplementation. Anim. Feed Sci. Technol., 225: 97–108.10.1016/j.anifeedsci.2017.01.007
  108. Rad-Spice M., Rogiewicz A., Jankowski J., Slominski B.A. (2018). Yellow-seeded B. napus and B. juncea canola. Part 1. Nutritive value of the meal for broiler chickens. Anim. Feed Sci. Technol., 240: 66–77.10.1016/j.anifeedsci.2018.03.017
  109. Rahman M.H., Joersbo M., Poulsen M.H. (2001). Development of yellow-seeded Brassica napus of double low quality. Plant Breed., 120: 473–478.10.1046/j.1439-0523.2001.00639.x
  110. Rahman M., McVetty P.B. (2011). A review of Brassica seed color. Can. J. Plant Sci., 91: 437–446.10.4141/cjps10124
  111. Rakow G., Relf-Eckstein J.A., Raney J.P. (2007). Rapeseed genetic research to improve its agronomic performance and seed quality. Helia, 30: 199–206.10.2298/HEL0746199R
  112. Rakowska M. (1997). Chemical and biological properties of rapeseed glucosinolate (in Polish). PBAI Bulletin, 201: 373–383.
  113. Relf-Eckstein J., Rakow G., Raney J.P. (2003). Yellow seeded Brassica napus – a new generation of high quality canola of Canada. Proc. 11th International Rapeseed Congress, 6–10.07.2003, Copenhagen, Denmark, 2: 458–460.
  114. Röbbelen G., Frauen M. (2003). Rapsschrot aus 00-Qualitätsarten. RAPS, 21: 186–187.
  115. Rogiewicz A., Nurnberg L., Slominski B.A. (2012). The effect of prepress-solvent extraction on the chemical and nutritive composition of canola meal. Proc. 24th World’s Poult. Cong., Salvador, Brazil.
  116. Rosiak E. (2020). Rapeseed Market, Condition and Prospects (in Polish).
  117. Rotkiewicz D., Konopka I. (1998). Phosphorus compounds in the rape seeds and oil (in Polish). Oilseed Crops, 19: 61–70.
  118. Salazar-Villanea S., Bruininx E.M., Gruppen H., Hendriks W.H., Carré P., Quinsac A., van der Poe A.F. (2016). Physical and chemical changes of rapeseed meal proteins during toasting and their effects on in vitro digestibility. J. Anim. Sci. Biotechnol., 7: 1–11.10.1186/s40104-016-0120-x
  119. Sanjayan N., Heo J.M., Nyachoti C.M. (2014). Nutrient digestibility and growth performance of pigs fed diets with different levels of canola meal from Brassica napus black and Brassica juncea yellow. J. Anim. Sci., 92: 3895–3905.10.2527/jas.2013-7215
  120. Sharifi S.D., Golestani G., Yaghobfar A., Khadem A., Pashazanussi H. (2013). Effects of supplementing a multienzyme to broiler diets containing a high level of wheat or canola meal on intestinal morphology and performance of chicks. J. Appl. Poult. Res., 22: 671– 679.10.3382/japr.2011-00452
  121. Shi C., He J., Yu J., Yu B., Mao X., Zheng P., Huang Z., Chen D. (2016). Physicochemical properties analysis and secretome of Aspergillus niger in fermented rapeseed meal. PloS One, 11: e0153230.10.1371/journal.pone.0153230
  122. Siger A., Nogala-Kałucka M., Lampart-Szczapa E., Hoffman A. (2004). Phenolic compound contents in new rape varieties (in Polish). Oilseed Crops, 25: 263–274.
  123. Slominski B.A., Campbell L.D. (1990). Non-starch polysaccharides of canola meal: Quantification, digestibility in poultry and potential benefit of dietary enzyme supplementation. J. Sci. Food Agric., 53: 175–184.10.1002/jsfa.2740530205
  124. Slominski B.A., Simbaya J., Campbell L.D., Rakow G., Guenter W. (1999). Nutritive value for broilers of meals derived from newly developed varieties of yellow-seeded canola. Anim. Feed Sci. Technol., 78: 249–262.10.1016/S0377-8401(99)00003-6
  125. Slominski B.A. (2011). Recent advances in research on enzymes for poultry diets. Poultry Sci., 90: 2013–2023.10.3382/ps.2011-01372
  126. Slominski B.A., Jia W., Rogiewicz A., Nyachoti C.M., Hickling D. (2012). Low-fiber canola. Part 1. Chemical and nutritive composition of the meal. J. Agric. Food Chem., 60: 12225–12230.10.1021/jf302117x
  127. Smulikowska S., Pastuszewska B., Ochtabińska A., Mieczkowska A. (1998). Composition and nutritional value for chickens and rats of seeds, cake and solvent meal from lowglucosinolate yellow-seeded spring rape and dark-seeded winter rape. J. Anim. Feed Sci., 7: 415–428.10.22358/jafs/69316/1998
  128. Smulikowska S. (2002). The brown color of the egg shells limits the use of rapeseed feed in laying hens (in Polish). Polish Poultry, 12: 18–19.
  129. Smulikowska S. (2003). Nutritional value of rapeseed pomace for poultry (in Polish). Polish Poultry, 6: 9–11.
  130. Smulikowska S., Nguyen C.V. (2003). Rape seeds and cake as a feed for poultry and swine and their effects on quality of animal products (in Polish). Oilseed Crops, 24: 11–22.
  131. Smulikowska S., Święch E., Czerwiński J. (2008). Nutritional value of yellow-seeded plants from Brassica genus for poultry and pigs (in Polish). Oilseed Crops, 29: 231–243.
  132. Stein H.H., Lagos L.V., Casas G.A. (2016). Nutritional value of feed ingredients of plant origin fed to pigs. Anim. Feed Sci. Technol., 218: 33–69.10.1016/j.anifeedsci.2016.05.003
  133. Thacker P.A. (2001). Effect of enzyme supplementation on the performance of growing-finishing pigs fed barley-based diets supplemented with soybean meal or canola meal. Asian-Australas. J. Anim. Sci., 14: 1008–1013.10.5713/ajas.2001.1008
  134. Theodoridou K., Yu P. (2013). Effect of processing conditions on the nutritive value of canola meal and presscake. Comparison of the yellow and brown-seeded canola meal with the brown-seeded canola presscake. J. Sci. Food Agric., 93: 1986–1995.10.1002/jsfa.6004
  135. Thiyam U., Claudia P., Jan U., Alfred B. (2009). De-oiled rapeseed and a protein isolate: characterization of sinapic acid derivatives by HPLC–DAD and LC–MS. Eur. Food Res. Technol., 229: 825–831.10.1007/s00217-009-1122-0
  136. Tie Y., Li L., Liu J., Liu C., Fu J., Xiao X., Wang G., Wang J. (2020). Two-step biological approach for treatment of rapeseed meal. J. Food Sci., 85: 340–348.10.1111/1750-3841.15011
  137. Trindade Neto M.A., Opepaju F.O., Slominski B.A., Nyachoti C.M. (2012). Ileal amino acid digestibility in canola meals from yellow- and black-seeded Brassica napus and Brassica juncea fed to growing pigs. J. Anim. Sci., 90: 3477–3484.10.2527/jas.2011-4773
  138. Tripathi M.K., Mishra A.S. (2007). Glucosinolates in animal nutrition: A review. Anim. Feed Sci. Technol., 132: 1–27.10.1016/j.anifeedsci.2006.03.003
  139. Walk C.L., Santos T.T., Bedford M.R. (2014). Influence of superdoses of a novel microbial phytase on growth performance, tibia ash, and gizzard phytate and inositol in young broilers. Poultry Sci., 93: 1172–1177.10.3382/ps.2013-03571
  140. Wanasundara J.P.D., Mclntosh T.C., Perera S.P., Withana-Gamage T.S., Mitra P. (2016). Canola/rapeseed protein-functionality and nutrition. OCL – Oilseeds fats Crops Lipids, 23: 1–15.10.1051/ocl/2016028
  141. Wang L.F., Beltranena E., Zijlstra R.T. (2017). Diet nutrient digestibility and growth performance of weaned pigs fed Brassica napus canola meal varying in nutritive quality. Anim. Feed Sci. Technol., 223: 90–98.10.1016/j.anifeedsci.2016.11.011
  142. Weightman R., Garland P., Phelps E., Clarke S., Hazzledine M., Berry P. (2014). Nutritional value of oilseed rape and its co-products for pig and poultry: potential improvements and implications for plant breeders. Available: https://ahdb.org.uk/cereals-oilseeds
  143. Wickramasuriya S.S., Yi Y.J., Yoo J., Kang N.K., Heo J.M. (2015). A review of canola meal as an alternative feed ingredient for ducks. J. Anim. Sci. Technol., 57: 29.10.1186/s40781-015-0062-4
  144. Wittkop B., Snowdon R.J., Friedt W. (2009). Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica, 170: 131–140.10.1007/s10681-009-9940-5
  145. Wittstock U., Halkier B.A. (2002). Glucosinolate research in the Arabidopsis era. Trends Plant Sci., 7: 263–270.10.1016/S1360-1385(02)02273-2
  146. Wolfram K., Schmidt J., Wray V., Milkowski C., Schliemann W., Strack D. (2010). Profiling of phenylpropanoids in transgenic low-sinapine oilseed rape (Brassica napus). Phytochemistry, 71: 1076–1084.10.1016/j.phytochem.2010.04.007
  147. Xu F.Z., Zeng X.G., Ding X.L. (2012). Effects of replacing soybean meal with fermented rapeseed meal on performance, serum biochemical variables and intestinal morphology of broilers. Asian-Australas. J. Anim. Sci., 25: 1734.10.5713/ajas.2012.12249
  148. Xu L., Diosady L.L. (2002). Removal of phenolic compounds in the production of high-quality canola protein isolates. Food Res. Int., 35: 23–30.10.1016/S0963-9969(00)00159-9
  149. Yun H.M., Lei X.J., Lee S.I., Kim I.H. (2018). Rapeseed meal and canola meal can partially replace soybean meal as a protein source in finishing pigs. J. Appl. Anim. Res., 46: 195– 199.10.1080/09712119.2017.1284076
  150. Zduńczyk Z., Jankowski J., Juśkiewicz J., Mikulski D., Slominski B.A. (2013). Effect of different dietary levels of low-glucosinolate rapeseed (canola) meal and non-starch polysaccharide-degrading enzymes on growth performance and gut physiology of growing turkeys. Can. J. Anim. Sci., 93: 353–362.10.4141/cjas2012-085
  151. Zhu L.P., Wang J.P., Ding X.M., Bai S.P., Zeng Q.F., Su Z.W., Xuan Y., Zhang K.Y. (2018). Effects of dietary rapeseed meal on laying performance, egg quality, apparent metabolic energy, and nutrient digestibility in laying hens. Livest. Sci., 214: 265–271.10.1016/j.livsci.2018.06.007
  152. Zijlstra R.T., Li S., Owusu-Asiedu A., Simmins P.H., Patience J.F. (2004). Effect of carbohydrase supplementation of wheat-and canola-meal-based diets on growth performance and nutrient digestibility in group-housed weaned pigs. Can. J. Anim. Sci., 84: 689–695.10.4141/A03-127
DOI: https://doi.org/10.2478/aoas-2022-0020 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1163 - 1183
Submitted on: Feb 16, 2021
Accepted on: Feb 3, 2022
Published on: Oct 29, 2022
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Kinga Gołębiewska, Anna Fraś, Damian Gołębiewski, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.