Adewole D.I., Rogiewicz A., Dyck B., Slominski B.A. (2016). Chemical and nutritive characteristics of canola meal from Canadian processing facilities. Anim. Feed Sci. Technol., 222: 17–30.10.1016/j.anifeedsci.2016.09.012
Adhikari P.A., Heo J.M., Nyachoti C.M. (2015). True and standardized total tract phosphorus digestibility in canola meals from Brassica napus black and Brassica juncea yellow fed to growing pigs. J. Anim. Sci., 93: 209–216.10.2527/jas.2014-7569
Aider A., Barbana C. (2011). Canola proteins: composition, extraction, functional properties, bioactivity, applications as a food ingredient and allergenicity – a practical and critical review. Trends Food Sci. Technol., 22: 21–39.10.1016/j.tifs.2010.11.002
Aljuobori A., Abdullah N., Zulkifli I., Soleimani A.F., Liang J.B., Oskoueian E. (2014). Lactobacillus salivarius fermentation reduced glucosinolate and fibre in canola meal. J. Food Res., 3: 95.10.5539/jfr.v3n5p95
Amarowicz R., Naczk M., Shahidi F. (2000). Antioxidant activity of crude tannins of canola and rapeseed hulls. J. Am. Oil Chem. Soc., 77: 957.10.1007/s11746-000-0151-0
Ayton J. (2014). Variability of quality traits in canola seed, oil and meal – a review. NSW Department of Primary Industries, New South Wales, Australia.
Banaszkiewicz T. (2011). Nutritional value of soybean meal. In: Soybean and Nutrition, El-Shemy H. (ed.). InTech, available: https://www.intechopen.com/books/soybean-and-nutrition/nutritional-value-of-soybean-meal.10.5772/23306
Barros F., Awika J.M., Rooney L.W. (2012). Interaction of tannins and other sorghum phenolic compounds with starch and effects on in vitro starch digestibility. J. Agric. Food Chem., 60: 11609–11617.10.1021/jf3034539
Beszterda M., Nogala-Kałucka M. (2019). Current research developments on the processing and improvement of the nutritional quality of rapeseed (Brassica napus L.). Eur. J. Lipid Sci. Technol., 121: 1800045.10.1002/ejlt.201800045
Bjerg B., Eggum B.O., Jacobsen I., Otte J., Sørensen H. (1989). Antinutritional and toxic effects in rats of individual glucosinolates (±myrosinases) added to a standard diet (2). J. Anim. Physiol. Anim. Nutr., 61: 227–244.10.1111/j.1439-0396.1989.tb00105.x
Bojanowska M. (2017). Changes in chemical composition of rapeseed meal during storage, influencing nutritional value of its protein and lipid fractions. J. Anim. Feed Sci., 26: 157–164.10.22358/jafs/74292/2017
Brzóska F., Śliwiński B., Michalik-Rutkowska O. (2010). Rapeseed feed – a place in the country’s protein balance and nutritional value (in Polish). Part 1. Wiad. Zoot., 48: 2–3.
Carré P., Citeau M., Robin G., Estorges M. (2016). Hull content and chemical composition of whole seeds, hulls and germs in cultivars of rapeseed (Brassica napus). OCL, 23: A302.10.1051/ocl/2016013
Chachaj R. (2020). Stimulation of the immune and antioxidative system of chickens and turkeys fed with feed with fermented soybean meal (in Polish). Doctoral thesis, University of Life Sciences in Lublin.
Chibowska M., Smulikowska S., Pastuszewska B. (2000). Metabolisable energy value of rapeseed meal and its fractions for chickens as affected by oil and fibre content. J. Anim. Feed Sci., 9: 371–378.10.22358/jafs/68054/2000
Czerwiński J., Smulikowska S., Mieczkowska A., Konieczka P., Piotrowska A., Bartkowiak-Broda I. (2012). The nutritive value and phosphorus availability of yellow-and dark-seeded rapeseed cakes and the effects of phytase supplementation in broilers. J. Anim. Feed Sci., 21: 677–695.10.22358/jafs/66140/2012
del Carmen Martinez-Ballesta M., Carvajal M. (2015). Myrosinase in Brassicaceae: the most important issue for glucosinolate turnover and food quality. Phytochem. Rev., 14: 1045– 1051.10.1007/s11101-015-9430-4
Dänicke S., Kracht W., Jeroch H., Zachmann R., Heidenreich E., Löwe R. (1998). Effect of different technical treatments of rapeseed on the feed value for broilers and laying hens. Arch. Anim. Nutr., 51: 53–62.10.1080/17450399809381905
Dinkova-Kostova A.T., Kostov R.V. (2012). Glucosinolates and isothiocyanates in health and disease. Trends Mol. Med., 18: 337–347.10.1016/j.molmed.2012.04.003
Egües I., Alriols M.G., Herseczki Z., Marton G., Labidi J. (2010). Hemicelluloses obtaining from rapeseed cake residue generated in the biodiesel production process. J. Ind. Eng. Chem., 16: 293–298.10.1016/j.jiec.2010.01.036
Eklund M., Sauer N., Schöne F., Messerschmidt U., Rosenfelder P., Htoo J.K., Mosenthin R. (2015). Effect of processing of rapeseed under defined conditions in a pilot plant on chemical composition and standardized ileal amino acid digestibility in rapeseed meal for pigs. J. Anim. Sci., 93: 2813–2825.10.2527/jas.2014-8210
Fang Z.F., Peng J., Liu Z.L., Liu Y.G. (2007). Responses of non-starch polysaccharide- degrading enzymes on digestibility and performance of growing pigs fed a diet based on corn, soya bean meal and Chinese double-low rapeseed meal. J. Anim. Physiol. Anim. Nutr., 91: 361–368.10.1111/j.1439-0396.2006.00664.x
Fang Z.F., Liu Z.L., Dai J.J., Qian H.Y., Qi Z.L., Ma L.B., Peng J. (2009). Effects of enzyme addition on the nutritive value of broiler diets containing hulled or dehulled Chinese double-low rapeseed meals. J. Anim. Physiol. Anim. Nutr., 93: 467–476.10.1111/j.1439-0396.2008.00829.x
Fazhi X., Lvmu L., Jiaping X., Kun Q., Zhide Z., Zhangyi L. (2011). Effects of fermented rapeseed meal on growth performance and serum parameters in ducks. Asian-Australas. J. Anim. Sci., 24: 678–684.10.5713/ajas.2011.10458
Feng D., Zuo J. (2007). Nutritional and anti-nutritional composition of rapeseed meal and its utilization as a feed ingredient for animal. International Consultative Group for Research on Rapeseed, Wuhan, China, pp. 265–270.
Feng D., Zuo J. (2015). Nutritional and anti-nutritional composition of rapeseed meal and its utilization as a feed ingredient for animal. Feed and Industrial Raw Material: Feed, pp. 265–270.
Gołębiewska K. (2018). Yellow-seeded winter rapeseed as a source of protein and energy in feeding monogastric animals (in Polish). Doctoral thesis, Plant Breeding and Acclimatization Institute.
Grela E.R., Czech A., Kiesz M., Wlazło Ł., Nowakowicz-Dębek B. (2019). A fermented rapeseed meal additive: Effects on production performance, nutrient digestibility, colostrum immunoglobulin content and microbial flora in sows. Anim. Nutr., 5: 373– 379.10.1016/j.aninu.2019.05.004
Hanczakowska E., Świątkiewicz M. (2014). Legume seeds and rapeseed press cake as replacers of soybean meal in feed for fattening pigs. Ann. Anim. Sci., 14: 921–934.10.2478/aoas-2014-0068
Hao Y., Wang Z., Zou Y., He R., Ju X., Yuan J. (2020). Effect of static-state fermentation on volatile composition in rapeseed meal. J. Sci. Food Agric., 100: 2145–2152.10.1002/jsfa.10238
Harloff H.J., Emrani N., Jung C. (2014). High throughput screening for detecting EMS mutations in oilseed rape (Brassica napus L.). Tagungsband der 64. Jahrestagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs, 25–26.11.2013, Raumberg-Gumpenstein, 9.
Hernacki B., Bartkowiak-Broda I., Piotrowska A., Cegielska-Taras T. (2009). A consideration on genetic mapping of QTL responsible for the yellow-seedness in winter rapeseed (Brassica napus L.). PBAI Bulletin, 253: 221–229.
Hu Z.Y., Hua W., Zhang L., Deng L.B., Wang X.F., Liu G.H., Hao W.J., Wang H.Z. (2013). Seed structure characteristics to form ultrahigh oil content in rapeseed. PLoS One, 8: 1–10.10.1371/journal.pone.0062099
Ishida M., Hara M., Fukino N., Kakizaki T., Morimitsu Y. (2014). Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breed. Sci., 64: 48–59.10.1270/jsbbs.64.48
Ivanova P., Chalova V., Uzunova G., Koleva L., Manolov I. (2016). Biochemical characterization of industrially produced rapeseed meal as a protein source in food industry. Agric. Agric. Sci. Proc., 10: 55–62.10.1016/j.aaspro.2016.09.009
Jeroch H., Jankowski J., Lipiec A., Kozłowski K., Matusevičius P., Mikołajczyk J., Schöne F. (2013). Rapeseed feed in animal nutrition. University of Warmia and Mazury in Olsztyn.
Jędrusek-Golińska A., Korczak J., Kmiecik D., Hęś M., Gramza A. (2003). The use of protein isolates from defatted rapeseed meal for production of hydrolysates (in Polish). Oilseed Crops, 24: 701–708.
Jia W., Mikulski D., Rogiewicz A., Zduńczyk Z., Jankowski J., Slominski B.A. (2012). Low-fiber canola. Part 2. Nutritive value of the meal. J. Agric. Food Chem., 60: 12231– 12237.10.1021/jf302118c
Jiang J., Wang Y., Xie T., Rong H., Li A., Fang Y., Wang Y. (2015). Metabolic characteristics in meal of black rapeseed and yellow-seeded progeny of Brassica napus–Sinapis alba hybrids. Molecules, 20: 21204–21213.10.3390/molecules201219761
Ju X.R., Wang X.F., He R., Wang L.F., Yuan J. (2012). Optimization of rapeseed peptide production by mixed solid-state fermentation. Food Sci., 33: 231–236.
Kaczmarek P., Korniewicz D., Lipiński K., Mazur M. (2016). Chemical composition of rapeseed products and their use in pig nutrition. Pol. J. Nat. Sci., 31: 545–562.
Kamińska B., Brzóska F., Skraba B. (2000). High-protein fraction of 00 type rapeseed meal in broiler nutrition. J. Anim. Feed Sci., 9: 123–136.10.22358/jafs/68035/2000
Kasprzak M.M., Houdijk J.G.M., Kightley S., Olukosi O.A., White G.A., Carré P., Wiseman J. (2016). Effects of rapeseed variety and oil extraction method on the content and ileal digestibility of crude protein and amino acids in rapeseed cake and softly processed rapeseed meal fed to broiler chickens. Anim. Feed Sci. Technol., 213: 90–98.10.1016/j.anifeedsci.2016.01.002
Kasprzak M.M., Houdijk J.G.M., Olukosi O.A., Appleyard H., Kightley S.P.J., Carré P., Wiseman J. (2017). The influence of oil extraction process of different rapeseed varieties on the ileal digestibility of crude protein and amino acids in broiler chickens. Anim. Feed Sci. Technol., 227: 68–74.10.1016/j.anifeedsci.2017.03.009
Khajali F., Slominski B.A. (2012). Factors that affect the nutritive value of canola meal for poultry. Poultry Sci., 91: 2564–2575.10.3382/ps.2012-02332
Kiesz M.E. (2019). The effectiveness of fermented soybean meal and/or rapeseed meal in sows and weaners feeding (in Polish). Doctoral thesis, University of Life Sciences in Lublin.
Kim K., Goel A., Lee S., Choi Y., Chae B.J. (2015). Comparative ileal amino acid digestibility and growth performance in growing pigs fed different level of canola meal. J. Anim. Sci. Technol., 57: 1–8.10.1186/s40781-015-0055-3
Kozlowski K., Jeroch H. (2014). Enhancing the nutritional value of poultry feedstuffs using the example of rapeseed products – a review. Ann. Anim. Sci., 14: 245–256.10.2478/aoas-2014-0014
Kozlowski K., Mikulski D., Rogiewicz A., Zduńczyk Z., Rad-Spice M., Jeroch H., Jankowski J., Slominski B.A. (2018). Yellow-seeded B. napus and B. juncea canola. Part 2. Nutritive value of the meal for turkeys. Anim. Feed Sci. Technol., 240: 102–116.10.1016/j.anifeedsci.2018.03.018
Kuśnierek W., Potkański A., Kuśnierek S. (2005). Apparent ileal and total digestibility in pigs of protein and amino acids of rapeseed meal before and after extrusion at 140 and 160ºC (in Polish). Oilseed Crops, 26: 537–548.
Li D., Pengbin X., Liming G., Shijun F., Canghai H. (2002). Determination of apparent ileal amino acid digestibility in rapeseed meal and cake processed at different temperatures using the direct and difference method with growing pigs. Arch. Anim. Nutr., 56: 339– 349.10.1080/00039420215629
Li J., Chen L., Liang Y., Ye X., Liu L. (2003). Research commercial application of the complete dominance yellow seeded gene in Brassica napus L. Proc. 11th International Rapeseed Congress, 6–10.07.2003, Copenhagen, Denamrk, 1: 202–204.
Li P., Wang F., Wu F., Wang J., Liu L., Lai C. (2015). Chemical composition, energy and amino acid digestibility in double-low rapeseed meal fed to growing pigs. J. Anim. Sci. Biotechnol., 6: 1–10.10.1186/s40104-015-0033-0
Lipsa F.D., Snowdon R., Friedt W. (2007). Improving rapeseed meal quality by reduction of condensed tannins. Proc. 10th International Rapeseed Congress, 26–30.03.2007, Wuhan, China.
Liu Y., Song M., Maison T., Stein H.H. (2014). Effects of protein concentration and heat treatment on concentration of digestible and metabolizable energy and on amino acid digestibility in four sources of canola meal fed to growing pigs. J. Anim. Sci., 92: 4466– 4477.10.2527/jas.2013-7433
Liu Y., Jaworski N.W., Rojas O.J., Stein H.H. (2016). Energy concentration and amino acid digestibility in high protein canola meal, conventional canola meal, and in soybean meal fed to growing pigs. Anim. Feed Sci. Technol., 212: 52–62.10.1016/j.anifeedsci.2015.11.017
Liu W.C., Lee S.I., Hong S.T., Jang Y.S., Kim I.H. (2018). Comparison of apparent total tract and ileal digestibility in growing and finishing pigs fed soybean meal, rapeseed meal, and canola meal. J. Appl. Anim. Res., 46: 55–59.10.1080/09712119.2016.1258364
Łopaciuk W., Rola K., Dzwonkowski W. (2019). Situation on world markets of feed raw materials and industrial feed (in Polish). State Feed Market and Prospects, 5–17.
Maison T., Stein H.H. (2014). Digestibility by growing pigs of amino acids in canola meal from North America and 00-rapeseed meal and 00-rapeseed expellers from Europe. J. Anim. Sci., 92: 3502–3514.10.2527/jas.2014-7748
Maison T., Liu Y., Stein H.H. (2015). Apparent and standardized total tract digestibility by growing pigs of phosphorus in canola meal from North America and 00-rapeseed meal and 00-rapeseed expellers from Europe without and with microbial phytase. J. Anim. Sci., 93: 3494–3502.10.2527/jas.2015-9055
Mansoori B., Rogiewicz A., Slominski B.A. (2015). The effect of canola meal tannins on the intestinal absorption capacity of broilers using a D-xylose test. J. Anim. Physiol. Anim. Nutr., 99: 1084–1093.10.1111/jpn.12320
Messad F., Létourneau-Montminy M.P., Charbonneau E., Sauvant D., Guay F. (2016). Meta-analysis of the amino acid digestibility of oilseed meal in growing pigs. Anim., 10: 1635–1644.10.1017/S1751731116000732
Michaelsen S., Otte J., Simonsen L.O., Sørensen H. (1994). Absorption and degradation of individual intact glucosinolates in the digestive tract of rodents. Acta Agric. Scand. A Anim. Sci., 44: 25–37.10.1080/09064709409410178
Mińkowski K., Krygier K. (1998). Influence of variety and size of rapeseeds on their physico-chemical characteristic (in Polish). Oilseed Crops, 19: 219–231.
Mosenthin R., Messerschmidt U., Sauer N., Carré P., Quinsac A., Schöne F. (2016). Effect of the desolventizing/toasting process on chemical composition and protein quality of rapeseed meal. J. Anim. Sci. Biotechnol., 7: 1–12.10.1186/s40104-016-0095-7
Mujić I., Šertović E., Jokić S., Sarić Z., Alibabić V., Vidović S., Živković J. (2011). Isoflavone content and antioxidant properties of soybean seeds. Croat. J. Food Sci. Technol., 3: 16–20.
Mushtaq T., Sarwar M., Ahmad G., Mirza M.A., Nawaz H., Mushtaq M.H., Noreen U. (2007). Influence of canola meal-based diets supplemented with exogenous enzyme and digestible lysine on performance, digestibility, carcass, and immunity responses of broiler chickens. Poultry Sci., 86: 2144–2151.10.1093/ps/86.10.2144
Myszka K., Boros D., Bartkowiak-Broda I. (2011). Comparison of chemical composition of rapeseed meals derived from winter rapeseed (Brassica napus L.) differing in colour of seeds (in Polish). Oilseed Crops, 32: 257–268.
Naczk M., Amarowicz R., Sullivan A., Shahidi F. (1998). Current research developments on polyphenolics of rapeseed/canola: a review. Food Chem., 62: 489–502.10.1016/S0308-8146(97)00198-2
Naczk M., Amarowicz R., Pink D., Shahidi F. (2000). Insoluble condensed tannins of canola/rapeseed. J. Agri. Food Chem., 48: 1758–1762.10.1021/jf9908401
Nesi N., Delourme R., Brégeon M., Falentin C., Renard M. (2008). Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed. C.R. Biol., 331: 763– 771.10.1016/j.crvi.2008.07.018
Newkirk R.W., Classen H.L., Edney M.J. (2003 a). Effects of prepress-solvent extraction on the nutritional value of canola meal for broiler chickens. Anim. Feed Sci. Technol., 104: 111–119.10.1016/S0377-8401(02)00331-0
Newkirk R.W., Classen H.L., Scott T.A., Edney M.J. (2003 b). The digestibility and content of amino acids in toasted and non-toasted canola meals. Can. J. Anim. Sci., 83: 131–139.10.4141/A02-028
Nia S.M., Ingalls J.R. (1992). Effect of heating on canola meal protein degradation in the rumen and digestion in the lower gastrointestinal tract of steers. Can. J. Anim. Sci., 72: 83–88.10.4141/cjas92-009
Noblet J., Le Goff G. (2001). Effect of dietary fibre on the energy value of feed for pigs. Anim. Feed Sci. Technol., 90: 35–52.10.1016/S0377-8401(01)00195-X
Ochodzki P., Rakowska M., Bjergegaard C., Sørensen H. (1995). Studies on enzyme based fractionation, chemical composition and biological effects of dietary fibres in rapeseed (Brassica napus L.). 1. Chemical composition of seeds and characteristics of soluble and insoluble dietary fibres of spring and winter type varieties of double low oilseed rape. J. Anim. Feed Sci., 4: 127–138.10.22358/jafs/69786/1995
Ochodzki P. (1997). Chemical composition of rape seed fibre (in Polish). Proc. ‘Dietary fiber – chemical composition and biological action’, Radzików, 24–25.04.1997, pp.75–87.
Osek M., Milczarek A. (2002). Natural and extruded rapeseed or flax seed in mixtures without animal protein for broiler chickens. Sci. Bull. Feed Ind., 1: 47–58.
Parr C.K., Liu Y., Parsons C.M., Stein H.H. (2015). Effects of high-protein or conventional canola meal on growth performance, organ weights, bone ash, and blood characteristics of weanling pigs. J. Anim. Sci., 93: 2165–2173.10.2527/jas.2014-8439
Pastuszewska B., Jabłecki G., Buraczewska L., Dakowski P., Taciak M., Matyjek R., Ochtabińska A. (2003). The protein value of differently processed rapeseed solvent meal and cake assessed by in vitro methods and in tests with rats. Anim. Feed Sci. Technol., 106: 175–188.10.1016/S0377-8401(03)00005-1
Pastuszewska B., Raj S. (2003). Rapeseed oilmeal as protein and energy feedstuff – limitations and perspectives (in Polish). Oilseed Crops, 24: 525–536.
Qiao H., Classen H.L. (2003). Nutritional and physiological effects of rapeseed meal sinapine in broiler chickens and its metabolism in the digestive tract. J. Sci. Food Agric., 83: 1430–1438.10.1002/jsfa.1559
Radfar M., Rogiewicz A., Slominski B.A. (2017). Chemical composition and nutritive value of canola-quality Brassica juncea meal for poultry and the effect of enzyme supplementation. Anim. Feed Sci. Technol., 225: 97–108.10.1016/j.anifeedsci.2017.01.007
Rad-Spice M., Rogiewicz A., Jankowski J., Slominski B.A. (2018). Yellow-seeded B. napus and B. juncea canola. Part 1. Nutritive value of the meal for broiler chickens. Anim. Feed Sci. Technol., 240: 66–77.10.1016/j.anifeedsci.2018.03.017
Rahman M.H., Joersbo M., Poulsen M.H. (2001). Development of yellow-seeded Brassica napus of double low quality. Plant Breed., 120: 473–478.10.1046/j.1439-0523.2001.00639.x
Relf-Eckstein J., Rakow G., Raney J.P. (2003). Yellow seeded Brassica napus – a new generation of high quality canola of Canada. Proc. 11th International Rapeseed Congress, 6–10.07.2003, Copenhagen, Denmark, 2: 458–460.
Rogiewicz A., Nurnberg L., Slominski B.A. (2012). The effect of prepress-solvent extraction on the chemical and nutritive composition of canola meal. Proc. 24th World’s Poult. Cong., Salvador, Brazil.
Salazar-Villanea S., Bruininx E.M., Gruppen H., Hendriks W.H., Carré P., Quinsac A., van der Poe A.F. (2016). Physical and chemical changes of rapeseed meal proteins during toasting and their effects on in vitro digestibility. J. Anim. Sci. Biotechnol., 7: 1–11.10.1186/s40104-016-0120-x
Sanjayan N., Heo J.M., Nyachoti C.M. (2014). Nutrient digestibility and growth performance of pigs fed diets with different levels of canola meal from Brassica napus black and Brassica juncea yellow. J. Anim. Sci., 92: 3895–3905.10.2527/jas.2013-7215
Sharifi S.D., Golestani G., Yaghobfar A., Khadem A., Pashazanussi H. (2013). Effects of supplementing a multienzyme to broiler diets containing a high level of wheat or canola meal on intestinal morphology and performance of chicks. J. Appl. Poult. Res., 22: 671– 679.10.3382/japr.2011-00452
Shi C., He J., Yu J., Yu B., Mao X., Zheng P., Huang Z., Chen D. (2016). Physicochemical properties analysis and secretome of Aspergillus niger in fermented rapeseed meal. PloS One, 11: e0153230.10.1371/journal.pone.0153230
Siger A., Nogala-Kałucka M., Lampart-Szczapa E., Hoffman A. (2004). Phenolic compound contents in new rape varieties (in Polish). Oilseed Crops, 25: 263–274.
Slominski B.A., Simbaya J., Campbell L.D., Rakow G., Guenter W. (1999). Nutritive value for broilers of meals derived from newly developed varieties of yellow-seeded canola. Anim. Feed Sci. Technol., 78: 249–262.10.1016/S0377-8401(99)00003-6
Slominski B.A., Jia W., Rogiewicz A., Nyachoti C.M., Hickling D. (2012). Low-fiber canola. Part 1. Chemical and nutritive composition of the meal. J. Agric. Food Chem., 60: 12225–12230.10.1021/jf302117x
Smulikowska S., Pastuszewska B., Ochtabińska A., Mieczkowska A. (1998). Composition and nutritional value for chickens and rats of seeds, cake and solvent meal from lowglucosinolate yellow-seeded spring rape and dark-seeded winter rape. J. Anim. Feed Sci., 7: 415–428.10.22358/jafs/69316/1998
Smulikowska S., Nguyen C.V. (2003). Rape seeds and cake as a feed for poultry and swine and their effects on quality of animal products (in Polish). Oilseed Crops, 24: 11–22.
Smulikowska S., Święch E., Czerwiński J. (2008). Nutritional value of yellow-seeded plants from Brassica genus for poultry and pigs (in Polish). Oilseed Crops, 29: 231–243.
Stein H.H., Lagos L.V., Casas G.A. (2016). Nutritional value of feed ingredients of plant origin fed to pigs. Anim. Feed Sci. Technol., 218: 33–69.10.1016/j.anifeedsci.2016.05.003
Thacker P.A. (2001). Effect of enzyme supplementation on the performance of growing-finishing pigs fed barley-based diets supplemented with soybean meal or canola meal. Asian-Australas. J. Anim. Sci., 14: 1008–1013.10.5713/ajas.2001.1008
Theodoridou K., Yu P. (2013). Effect of processing conditions on the nutritive value of canola meal and presscake. Comparison of the yellow and brown-seeded canola meal with the brown-seeded canola presscake. J. Sci. Food Agric., 93: 1986–1995.10.1002/jsfa.6004
Thiyam U., Claudia P., Jan U., Alfred B. (2009). De-oiled rapeseed and a protein isolate: characterization of sinapic acid derivatives by HPLC–DAD and LC–MS. Eur. Food Res. Technol., 229: 825–831.10.1007/s00217-009-1122-0
Tie Y., Li L., Liu J., Liu C., Fu J., Xiao X., Wang G., Wang J. (2020). Two-step biological approach for treatment of rapeseed meal. J. Food Sci., 85: 340–348.10.1111/1750-3841.15011
Walk C.L., Santos T.T., Bedford M.R. (2014). Influence of superdoses of a novel microbial phytase on growth performance, tibia ash, and gizzard phytate and inositol in young broilers. Poultry Sci., 93: 1172–1177.10.3382/ps.2013-03571
Weightman R., Garland P., Phelps E., Clarke S., Hazzledine M., Berry P. (2014). Nutritional value of oilseed rape and its co-products for pig and poultry: potential improvements and implications for plant breeders. Available: https://ahdb.org.uk/cereals-oilseeds
Wickramasuriya S.S., Yi Y.J., Yoo J., Kang N.K., Heo J.M. (2015). A review of canola meal as an alternative feed ingredient for ducks. J. Anim. Sci. Technol., 57: 29.10.1186/s40781-015-0062-4
Wittkop B., Snowdon R.J., Friedt W. (2009). Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica, 170: 131–140.10.1007/s10681-009-9940-5
Xu L., Diosady L.L. (2002). Removal of phenolic compounds in the production of high-quality canola protein isolates. Food Res. Int., 35: 23–30.10.1016/S0963-9969(00)00159-9
Yun H.M., Lei X.J., Lee S.I., Kim I.H. (2018). Rapeseed meal and canola meal can partially replace soybean meal as a protein source in finishing pigs. J. Appl. Anim. Res., 46: 195– 199.10.1080/09712119.2017.1284076
Zduńczyk Z., Jankowski J., Juśkiewicz J., Mikulski D., Slominski B.A. (2013). Effect of different dietary levels of low-glucosinolate rapeseed (canola) meal and non-starch polysaccharide-degrading enzymes on growth performance and gut physiology of growing turkeys. Can. J. Anim. Sci., 93: 353–362.10.4141/cjas2012-085
Zhu L.P., Wang J.P., Ding X.M., Bai S.P., Zeng Q.F., Su Z.W., Xuan Y., Zhang K.Y. (2018). Effects of dietary rapeseed meal on laying performance, egg quality, apparent metabolic energy, and nutrient digestibility in laying hens. Livest. Sci., 214: 265–271.10.1016/j.livsci.2018.06.007
Zijlstra R.T., Li S., Owusu-Asiedu A., Simmins P.H., Patience J.F. (2004). Effect of carbohydrase supplementation of wheat-and canola-meal-based diets on growth performance and nutrient digestibility in group-housed weaned pigs. Can. J. Anim. Sci., 84: 689–695.10.4141/A03-127