References
- Asfaw A., Assefa A. (2019). Animal transgenesis technology: A review. Cogent Food Agricult., 5: 1686802.10.1080/23311932.2019.1686802
- Beddoes C.M., Case C.P., Briscoe W.H. (2015). Understanding nanoparticle cellular entry: A physicochemical perspective. Adv. Colloid Interface Sci., 218: 48–68.10.1016/j.cis.2015.01.007
- Behzadi S., Serpooshan V., Tao W., Hamaly M.A., Alkawareek M.Y., Dreaden E.C., Brown D., Alkilany A.M., Farokhzad O.C., Mahmoudi M. (2017). Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev., 46: 4218–4244.10.1039/C6CS00636A
- Bock I., Losonczi E., Mamo S., Polgar Z., Harnos A., Dinnyes A., Pribenszky C. (2010). Stress tolerance and transcriptional response in mouse embryos treated with high hydrostatic pressure to enhance cryotolerance. Cryo Letters, 31: 401–412.
- Bogliolo L., Ariu F., Leoni G., Uccheddu S., Bebbere D. (2011). High hydrostatic pressure treatment improves the quality of in vitro-produced ovine blastocysts. Reprod. Fertil. Dev., 23: 809–817.10.1071/RD11023
- Chernousova S., Epple M. (2017). Live-cell imaging to compare the transfection and gene silencing efficiency of calcium phosphate nanoparticles and a liposomal transfection agent. Gene Ther., 24: 282–289.10.1038/gt.2017.13
- Choi Y., Kim H.A., Kim K.W., Lee B.T. (2018). Comparative toxicity of silver nanoparticles and silver ions to Escherichia coli. J. Environ. Sci. (China), 66: 50–60.10.1016/j.jes.2017.04.028
- De M., Ghosh P.S., Rotello V.M. (2008). Applications of nanoparticles in biology. Adv. Mater., 20: 4225–4241.10.1002/adma.200703183
- Ding Y., Jiang Z., Saha K., Kim C.S., Kim S.T., Landis R.F., Rotello V.M. (2014). Gold nanoparticles for nucleic acid delivery. Mol. Ther., 22: 1075–1083.10.1038/mt.2014.30
- Du Y., Lin L., Schmidt M., Bøgh I.B., Kragh P.M., Sørensen C.B., Li J., Purup S., Pribenszky C., Molnár M., Kuwayama M., Zhang X., Yang H., Bolund L., Vajta G. (2008 a). High hydrostatic pressure treatment of porcine oocytes before handmade cloning improves developmental competence and cryosurvival. Cloning Stem Cells, 10: 325–330.10.1089/clo.2007.008918479211
- Du Y., Pribenszky C.S., Molnár M., Zhang X., Yang H., Kuwayama M., Pedersen A.M., Villemoes K., Bolund L., Vajta G. (2008 b). High hydrostatic pressure: a new way to improve in vitro developmental competence of porcine matured oocytes after vitrification. Reproduction, 135: 13–17.10.1530/REP-07-036218159079
- Encabo-Berzosa M.M., Sancho-Albero M., Sebastian V., Irusta S., Arruebo M., Santamaria J., Martín Duque P. (2017). Polymer functionalized gold nanoparticles as nonviral gene delivery reagents. J. Gene Med., 19: e2964.10.1002/jgm.2964
- Ghosh P., Han G., De M., Kim C.K., Rotello V.M. (2008). Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev., 60: 1307–1315.10.1016/j.addr.2008.03.016
- Huang Y.W., Cambre M., Lee H.J. (2017). The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int. J. Mol. Sci., 18: 2702.10.3390/ijms18122702
- Jiang Z., Harrington P., Zhang M., Marjani S.L., Park J., Kuo L., Pribenszky C., Tian X.C. (2016). Effects of high hydrostatic pressure on expression profiles of in vitro produced vitrified bovine blastocysts. Sci. Rep., 6: 21215.10.1038/srep21215
- Kettler K., Veltman K., van de Meent D., van Wezel A., Hendriks A.J. (2014). Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ. Toxicol. Chem., 33: 481–492.10.1002/etc.2470
- Lin L., Luo Y., Sørensen P., Prætorius H., Vajta G., Callesen H., Pribenszky C., Bolund L., Kristensen T.N. (2014). Effects of high hydrostatic pressure on genomic expression profiling of porcine parthenogenetic activated and cloned embryos. Reprod. Fertil. Dev., 26: 469–484.10.1071/RD13037
- Neuhaus B., Tosun B., Rotan O., Frede A., Westendorf A.M., Epple M. (2016). Nanoparticles as transfection agents: a comprehensive study with ten different cell lines. RSC Adv., 6: 18102– 18112.10.1039/C5RA25333K
- Park M.R., Gurunathan S., Choi Y.J., Kwon D.N., Han J.W., Cho S.G., Park C., Seo H.G., Kim J.H. (2013). Chitosan nanoparticles cause pre- and postimplantation embryo complications in mice. Biol. Reprod., 88: 88.10.1095/biolreprod.112.107532
- Patil S., Gao Y.G, Lin X., Li Y., Dang K., Tian Y., Zhang W.J., Jiang S.F, Qadir A., Qian A.R. (2019). The development of functional non-viral vectors for gene delivery. Int. J. Mol. Sci., 4: 5491.10.3390/ijms20215491
- Pribenszky C., Vajta G. (2011). Cells under pressure: how sublethal hydrostatic pressure stress treatment increases gametes’ and embryos’ performance. Reprod. Fertil. Dev., 23: 48–55.10.1071/RD10231
- Pribenszky C., Du Y., Molnár M., Harnos A., Vajta G. (2008). Increased stress tolerance of matured pig oocytes after high hydrostatic pressure treatment. Anim. Reprod. Sci., 106: 200–207.10.1016/j.anireprosci.2008.01.016
- Pribenszky C., Vajta G., Molnar M., Du Y., Lin L., Bolund L., Yovich, J. (2010). Stress for stress tolerance? A fundamentally new approach in mammalian embryology. Biol. Reprod., 83: 690–697.10.1095/biolreprod.110.083386
- Rana S., Bajaj A., Mout R., Rotello V.M. (2012). Monolayer coated gold nanoparticles for delivery applications., Adv. Drug Deliv. Rev., 64: 200–216.10.1016/j.addr.2011.08.006
- Rizvi S.A.A., Saleh A.M. (2018). Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 26: 64–70.10.1016/j.jsps.2017.10.012
- Romek M., Kucia M., Gajda B., Krzysztofowicz E., Smorag Z. (2019). Effect of high hydrostatic pressure on mitochondrial activity, reactive oxygen species level and developmental competence of cultured pig embryos. Theriogenology, 140: 99–108.10.1016/j.theriogenology.2019.08.013
- Santos J.A., Liarte D.B., Ribeiro A.B., Rizzo M.S., da Costa M.P., Osajima J.A., Silva-Filho E.C. (2021). Biopolymeric materials used as nonviral vectors: a review. Polysaccharides, 2: 100–109.10.3390/polysaccharides2010007
- Sarkar B., Verma S.K., Akhtar J., Netam S.P., Gupta S.K., Panda P.K., Mukherjee K. (2018). Molecular aspect of silver nanoparticles regulated embryonic development in zebrafish (Danio rerio) by Oct-4 expression. Chemosphere, 206: 560–567.10.1016/j.chemosphere.2018.05.018
- Selby L.I., Cortez-Jugo C.M., Such G.K., Johnston A.P.R. (2017). Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 9: e1452.10.1002/wnan.1452
- Siqueira Filho E., Caixeta E.S., Pribenszky C., Molnar M., Horvath A., Harnos A., Franco M.M., Rumpf R. (2011). Vitrification of bovine blastocysts pretreated with sublethal hydrostatic pressure stress: evaluation of post-thaw in vitro development and gene expression. Reprod. Fertil. Dev., 23: 585–590.10.1071/RD10203
- Taylor U., Garrels W., Barchanski A., Peterson S., Sajti L., Lucas-Hahn A., Gamrad L., Baulain U., Klein S., Kues W.A., Barcikowski S., Rath D. (2014). Injection of ligand-free gold and silver nanoparticles into murine embryos does not impact pre-implantation development. Beilstein J. Nanotechnol., 5: 677–688.10.3762/bjnano.5.80
- Taylor U., Tiedmann D., Rehbock C., Kues W.A., Barcikowski S., Rath D. (2015). Influence of gold, silver and gold-silver nanoparticles on germ cell function and embryo development. Beilstein J. Nanotechnol., 6: 651–664.10.3762/bjnano.6.66
- Trigal B., Muñoz M., Gómez E., Caamaño J.N., Martin D., Carrocera S., Casais R., Diez C. (2013). Cell counts and survival to vitrification of bovine in vitro produced blastocysts subjected to sublethal high hydrostatic pressure. Reprod. Domest. Anim., 48: 200–206.10.1111/j.1439-0531.2012.02131.x
- Xie X., Liao J., Shao X., Li Q., Lin Y. (2017). The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles. Sci. Rep., 7: 3827.10.1038/s41598-017-04229-z
- Zoroddu M.A., Medici S., Ledda A., Nurchi V.M., Lachowicz J.I., Peana M. (2014). Toxicity of nanoparticles. Curr. Med. Chem., 21: 3837–3853.10.2174/0929867321666140601162314