Have a personal or library account? Click to login
Effect of high hydrostatic pressure on the in vitro development and molecular quality of transgenic rabbit embryos derived from nano-transfected zygotes Cover

Effect of high hydrostatic pressure on the in vitro development and molecular quality of transgenic rabbit embryos derived from nano-transfected zygotes

Open Access
|Jul 2022

References

  1. Asfaw A., Assefa A. (2019). Animal transgenesis technology: A review. Cogent Food Agricult., 5: 1686802.10.1080/23311932.2019.1686802
  2. Beddoes C.M., Case C.P., Briscoe W.H. (2015). Understanding nanoparticle cellular entry: A physicochemical perspective. Adv. Colloid Interface Sci., 218: 48–68.10.1016/j.cis.2015.01.007
  3. Behzadi S., Serpooshan V., Tao W., Hamaly M.A., Alkawareek M.Y., Dreaden E.C., Brown D., Alkilany A.M., Farokhzad O.C., Mahmoudi M. (2017). Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev., 46: 4218–4244.10.1039/C6CS00636A
  4. Bock I., Losonczi E., Mamo S., Polgar Z., Harnos A., Dinnyes A., Pribenszky C. (2010). Stress tolerance and transcriptional response in mouse embryos treated with high hydrostatic pressure to enhance cryotolerance. Cryo Letters, 31: 401–412.
  5. Bogliolo L., Ariu F., Leoni G., Uccheddu S., Bebbere D. (2011). High hydrostatic pressure treatment improves the quality of in vitro-produced ovine blastocysts. Reprod. Fertil. Dev., 23: 809–817.10.1071/RD11023
  6. Chernousova S., Epple M. (2017). Live-cell imaging to compare the transfection and gene silencing efficiency of calcium phosphate nanoparticles and a liposomal transfection agent. Gene Ther., 24: 282–289.10.1038/gt.2017.13
  7. Choi Y., Kim H.A., Kim K.W., Lee B.T. (2018). Comparative toxicity of silver nanoparticles and silver ions to Escherichia coli. J. Environ. Sci. (China), 66: 50–60.10.1016/j.jes.2017.04.028
  8. De M., Ghosh P.S., Rotello V.M. (2008). Applications of nanoparticles in biology. Adv. Mater., 20: 4225–4241.10.1002/adma.200703183
  9. Ding Y., Jiang Z., Saha K., Kim C.S., Kim S.T., Landis R.F., Rotello V.M. (2014). Gold nanoparticles for nucleic acid delivery. Mol. Ther., 22: 1075–1083.10.1038/mt.2014.30
  10. Du Y., Lin L., Schmidt M., Bøgh I.B., Kragh P.M., Sørensen C.B., Li J., Purup S., Pribenszky C., Molnár M., Kuwayama M., Zhang X., Yang H., Bolund L., Vajta G. (2008 a). High hydrostatic pressure treatment of porcine oocytes before handmade cloning improves developmental competence and cryosurvival. Cloning Stem Cells, 10: 325–330.10.1089/clo.2007.008918479211
  11. Du Y., Pribenszky C.S., Molnár M., Zhang X., Yang H., Kuwayama M., Pedersen A.M., Villemoes K., Bolund L., Vajta G. (2008 b). High hydrostatic pressure: a new way to improve in vitro developmental competence of porcine matured oocytes after vitrification. Reproduction, 135: 13–17.10.1530/REP-07-036218159079
  12. Encabo-Berzosa M.M., Sancho-Albero M., Sebastian V., Irusta S., Arruebo M., Santamaria J., Martín Duque P. (2017). Polymer functionalized gold nanoparticles as nonviral gene delivery reagents. J. Gene Med., 19: e2964.10.1002/jgm.2964
  13. Ghosh P., Han G., De M., Kim C.K., Rotello V.M. (2008). Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev., 60: 1307–1315.10.1016/j.addr.2008.03.016
  14. Huang Y.W., Cambre M., Lee H.J. (2017). The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int. J. Mol. Sci., 18: 2702.10.3390/ijms18122702
  15. Jiang Z., Harrington P., Zhang M., Marjani S.L., Park J., Kuo L., Pribenszky C., Tian X.C. (2016). Effects of high hydrostatic pressure on expression profiles of in vitro produced vitrified bovine blastocysts. Sci. Rep., 6: 21215.10.1038/srep21215
  16. Kettler K., Veltman K., van de Meent D., van Wezel A., Hendriks A.J. (2014). Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ. Toxicol. Chem., 33: 481–492.10.1002/etc.2470
  17. Lin L., Luo Y., Sørensen P., Prætorius H., Vajta G., Callesen H., Pribenszky C., Bolund L., Kristensen T.N. (2014). Effects of high hydrostatic pressure on genomic expression profiling of porcine parthenogenetic activated and cloned embryos. Reprod. Fertil. Dev., 26: 469–484.10.1071/RD13037
  18. Neuhaus B., Tosun B., Rotan O., Frede A., Westendorf A.M., Epple M. (2016). Nanoparticles as transfection agents: a comprehensive study with ten different cell lines. RSC Adv., 6: 18102– 18112.10.1039/C5RA25333K
  19. Park M.R., Gurunathan S., Choi Y.J., Kwon D.N., Han J.W., Cho S.G., Park C., Seo H.G., Kim J.H. (2013). Chitosan nanoparticles cause pre- and postimplantation embryo complications in mice. Biol. Reprod., 88: 88.10.1095/biolreprod.112.107532
  20. Patil S., Gao Y.G, Lin X., Li Y., Dang K., Tian Y., Zhang W.J., Jiang S.F, Qadir A., Qian A.R. (2019). The development of functional non-viral vectors for gene delivery. Int. J. Mol. Sci., 4: 5491.10.3390/ijms20215491
  21. Pribenszky C., Vajta G. (2011). Cells under pressure: how sublethal hydrostatic pressure stress treatment increases gametes’ and embryos’ performance. Reprod. Fertil. Dev., 23: 48–55.10.1071/RD10231
  22. Pribenszky C., Du Y., Molnár M., Harnos A., Vajta G. (2008). Increased stress tolerance of matured pig oocytes after high hydrostatic pressure treatment. Anim. Reprod. Sci., 106: 200–207.10.1016/j.anireprosci.2008.01.016
  23. Pribenszky C., Vajta G., Molnar M., Du Y., Lin L., Bolund L., Yovich, J. (2010). Stress for stress tolerance? A fundamentally new approach in mammalian embryology. Biol. Reprod., 83: 690–697.10.1095/biolreprod.110.083386
  24. Rana S., Bajaj A., Mout R., Rotello V.M. (2012). Monolayer coated gold nanoparticles for delivery applications., Adv. Drug Deliv. Rev., 64: 200–216.10.1016/j.addr.2011.08.006
  25. Rizvi S.A.A., Saleh A.M. (2018). Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 26: 64–70.10.1016/j.jsps.2017.10.012
  26. Romek M., Kucia M., Gajda B., Krzysztofowicz E., Smorag Z. (2019). Effect of high hydrostatic pressure on mitochondrial activity, reactive oxygen species level and developmental competence of cultured pig embryos. Theriogenology, 140: 99–108.10.1016/j.theriogenology.2019.08.013
  27. Santos J.A., Liarte D.B., Ribeiro A.B., Rizzo M.S., da Costa M.P., Osajima J.A., Silva-Filho E.C. (2021). Biopolymeric materials used as nonviral vectors: a review. Polysaccharides, 2: 100–109.10.3390/polysaccharides2010007
  28. Sarkar B., Verma S.K., Akhtar J., Netam S.P., Gupta S.K., Panda P.K., Mukherjee K. (2018). Molecular aspect of silver nanoparticles regulated embryonic development in zebrafish (Danio rerio) by Oct-4 expression. Chemosphere, 206: 560–567.10.1016/j.chemosphere.2018.05.018
  29. Selby L.I., Cortez-Jugo C.M., Such G.K., Johnston A.P.R. (2017). Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 9: e1452.10.1002/wnan.1452
  30. Siqueira Filho E., Caixeta E.S., Pribenszky C., Molnar M., Horvath A., Harnos A., Franco M.M., Rumpf R. (2011). Vitrification of bovine blastocysts pretreated with sublethal hydrostatic pressure stress: evaluation of post-thaw in vitro development and gene expression. Reprod. Fertil. Dev., 23: 585–590.10.1071/RD10203
  31. Taylor U., Garrels W., Barchanski A., Peterson S., Sajti L., Lucas-Hahn A., Gamrad L., Baulain U., Klein S., Kues W.A., Barcikowski S., Rath D. (2014). Injection of ligand-free gold and silver nanoparticles into murine embryos does not impact pre-implantation development. Beilstein J. Nanotechnol., 5: 677–688.10.3762/bjnano.5.80
  32. Taylor U., Tiedmann D., Rehbock C., Kues W.A., Barcikowski S., Rath D. (2015). Influence of gold, silver and gold-silver nanoparticles on germ cell function and embryo development. Beilstein J. Nanotechnol., 6: 651–664.10.3762/bjnano.6.66
  33. Trigal B., Muñoz M., Gómez E., Caamaño J.N., Martin D., Carrocera S., Casais R., Diez C. (2013). Cell counts and survival to vitrification of bovine in vitro produced blastocysts subjected to sublethal high hydrostatic pressure. Reprod. Domest. Anim., 48: 200–206.10.1111/j.1439-0531.2012.02131.x
  34. Xie X., Liao J., Shao X., Li Q., Lin Y. (2017). The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles. Sci. Rep., 7: 3827.10.1038/s41598-017-04229-z
  35. Zoroddu M.A., Medici S., Ledda A., Nurchi V.M., Lachowicz J.I., Peana M. (2014). Toxicity of nanoparticles. Curr. Med. Chem., 21: 3837–3853.10.2174/0929867321666140601162314
DOI: https://doi.org/10.2478/aoas-2022-0016 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 931 - 943
Submitted on: Jul 28, 2021
Accepted on: Jan 19, 2022
Published on: Jul 19, 2022
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Natalia Dzięgiel, Jacek Jura, Marcin Samiec, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.