Have a personal or library account? Click to login
Effect of high hydrostatic pressure on the in vitro development and molecular quality of transgenic rabbit embryos derived from nano-transfected zygotes
Behzadi S., Serpooshan V., Tao W., Hamaly M.A., Alkawareek M.Y., Dreaden E.C., Brown D., Alkilany A.M., Farokhzad O.C., Mahmoudi M. (2017). Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev., 46: 4218–4244.10.1039/C6CS00636A
Bock I., Losonczi E., Mamo S., Polgar Z., Harnos A., Dinnyes A., Pribenszky C. (2010). Stress tolerance and transcriptional response in mouse embryos treated with high hydrostatic pressure to enhance cryotolerance. Cryo Letters, 31: 401–412.
Chernousova S., Epple M. (2017). Live-cell imaging to compare the transfection and gene silencing efficiency of calcium phosphate nanoparticles and a liposomal transfection agent. Gene Ther., 24: 282–289.10.1038/gt.2017.13
Choi Y., Kim H.A., Kim K.W., Lee B.T. (2018). Comparative toxicity of silver nanoparticles and silver ions to Escherichia coli. J. Environ. Sci. (China), 66: 50–60.10.1016/j.jes.2017.04.028
Ding Y., Jiang Z., Saha K., Kim C.S., Kim S.T., Landis R.F., Rotello V.M. (2014). Gold nanoparticles for nucleic acid delivery. Mol. Ther., 22: 1075–1083.10.1038/mt.2014.30
Du Y., Lin L., Schmidt M., Bøgh I.B., Kragh P.M., Sørensen C.B., Li J., Purup S., Pribenszky C., Molnár M., Kuwayama M., Zhang X., Yang H., Bolund L., Vajta G. (2008 a). High hydrostatic pressure treatment of porcine oocytes before handmade cloning improves developmental competence and cryosurvival. Cloning Stem Cells, 10: 325–330.10.1089/clo.2007.008918479211
Du Y., Pribenszky C.S., Molnár M., Zhang X., Yang H., Kuwayama M., Pedersen A.M., Villemoes K., Bolund L., Vajta G. (2008 b). High hydrostatic pressure: a new way to improve in vitro developmental competence of porcine matured oocytes after vitrification. Reproduction, 135: 13–17.10.1530/REP-07-036218159079
Encabo-Berzosa M.M., Sancho-Albero M., Sebastian V., Irusta S., Arruebo M., Santamaria J., Martín Duque P. (2017). Polymer functionalized gold nanoparticles as nonviral gene delivery reagents. J. Gene Med., 19: e2964.10.1002/jgm.2964
Ghosh P., Han G., De M., Kim C.K., Rotello V.M. (2008). Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev., 60: 1307–1315.10.1016/j.addr.2008.03.016
Huang Y.W., Cambre M., Lee H.J. (2017). The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int. J. Mol. Sci., 18: 2702.10.3390/ijms18122702
Jiang Z., Harrington P., Zhang M., Marjani S.L., Park J., Kuo L., Pribenszky C., Tian X.C. (2016). Effects of high hydrostatic pressure on expression profiles of in vitro produced vitrified bovine blastocysts. Sci. Rep., 6: 21215.10.1038/srep21215
Kettler K., Veltman K., van de Meent D., van Wezel A., Hendriks A.J. (2014). Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ. Toxicol. Chem., 33: 481–492.10.1002/etc.2470
Neuhaus B., Tosun B., Rotan O., Frede A., Westendorf A.M., Epple M. (2016). Nanoparticles as transfection agents: a comprehensive study with ten different cell lines. RSC Adv., 6: 18102– 18112.10.1039/C5RA25333K
Park M.R., Gurunathan S., Choi Y.J., Kwon D.N., Han J.W., Cho S.G., Park C., Seo H.G., Kim J.H. (2013). Chitosan nanoparticles cause pre- and postimplantation embryo complications in mice. Biol. Reprod., 88: 88.10.1095/biolreprod.112.107532
Patil S., Gao Y.G, Lin X., Li Y., Dang K., Tian Y., Zhang W.J., Jiang S.F, Qadir A., Qian A.R. (2019). The development of functional non-viral vectors for gene delivery. Int. J. Mol. Sci., 4: 5491.10.3390/ijms20215491
Pribenszky C., Du Y., Molnár M., Harnos A., Vajta G. (2008). Increased stress tolerance of matured pig oocytes after high hydrostatic pressure treatment. Anim. Reprod. Sci., 106: 200–207.10.1016/j.anireprosci.2008.01.016
Pribenszky C., Vajta G., Molnar M., Du Y., Lin L., Bolund L., Yovich, J. (2010). Stress for stress tolerance? A fundamentally new approach in mammalian embryology. Biol. Reprod., 83: 690–697.10.1095/biolreprod.110.083386
Rizvi S.A.A., Saleh A.M. (2018). Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 26: 64–70.10.1016/j.jsps.2017.10.012
Romek M., Kucia M., Gajda B., Krzysztofowicz E., Smorag Z. (2019). Effect of high hydrostatic pressure on mitochondrial activity, reactive oxygen species level and developmental competence of cultured pig embryos. Theriogenology, 140: 99–108.10.1016/j.theriogenology.2019.08.013
Siqueira Filho E., Caixeta E.S., Pribenszky C., Molnar M., Horvath A., Harnos A., Franco M.M., Rumpf R. (2011). Vitrification of bovine blastocysts pretreated with sublethal hydrostatic pressure stress: evaluation of post-thaw in vitro development and gene expression. Reprod. Fertil. Dev., 23: 585–590.10.1071/RD10203
Taylor U., Garrels W., Barchanski A., Peterson S., Sajti L., Lucas-Hahn A., Gamrad L., Baulain U., Klein S., Kues W.A., Barcikowski S., Rath D. (2014). Injection of ligand-free gold and silver nanoparticles into murine embryos does not impact pre-implantation development. Beilstein J. Nanotechnol., 5: 677–688.10.3762/bjnano.5.80
Taylor U., Tiedmann D., Rehbock C., Kues W.A., Barcikowski S., Rath D. (2015). Influence of gold, silver and gold-silver nanoparticles on germ cell function and embryo development. Beilstein J. Nanotechnol., 6: 651–664.10.3762/bjnano.6.66
Trigal B., Muñoz M., Gómez E., Caamaño J.N., Martin D., Carrocera S., Casais R., Diez C. (2013). Cell counts and survival to vitrification of bovine in vitro produced blastocysts subjected to sublethal high hydrostatic pressure. Reprod. Domest. Anim., 48: 200–206.10.1111/j.1439-0531.2012.02131.x
Xie X., Liao J., Shao X., Li Q., Lin Y. (2017). The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles. Sci. Rep., 7: 3827.10.1038/s41598-017-04229-z