Have a personal or library account? Click to login

Embryo production by in vitro fertilization in wild ungulates: progress and perspectives – A Review

Open Access
|Oct 2022

References

  1. Andrabi S.M.H., Maxwell W.M.C. (2007). A review on reproductive biotechnologies for conservation of endangered mammalian species. Anim. Reprod. Sci., 99: 223–243.10.1016/j.anireprosci.2006.07.002
  2. Benham H.M., McCollum M.P., Nol P., Frey R.K., Clarke P.R., Rhyan J.C., Barfield J.P. (2021). Production of embryos and a live offspring using post-mortem reproductive material from bison (Bison bison bison) originating in Yellowstone National Park, USA. Theriogenology, 160: 33–39.10.1016/j.theriogenology.2020.10.022
  3. Berg D.K., Asher G.W. (2003). New developments reproductive technologies in deer. Theriogenology, 59: 189–205.10.1016/S0093-691X(02)01272-4
  4. Berg D.K., Thompson J.G., Asher G.W. (2002). Development of in vitro embryo production systems for red deer (Cervus elaphus): part 2. The timing of in vitro nuclear oocyte maturation. Anim. Reprod. Sci., 70: 77–84.10.1016/S0378-4320(01)00200-7
  5. Berlinguer F., González R., Succu S., Del Olmo A., Garde J.J., Espeso G., Gomendio M., Ledda S., Roldan E.R. (2008). In vitro oocyte maturation, fertilization and culture after ovum pick-up in an endangered gazelle (Gazella dama mhorr). Theriogenology, 69: 349–359.10.1016/j.theriogenology.2007.10.001
  6. Borges A.A., Santos M.V.O., Queiroz Neta L.B., Oliveira M.F., Silva A.R., Pereira A.F. (2018). In vitro maturation of collared peccary (Pecari tajacu) oocytes after different incubation times. Pesq. Vet. Bras., 38: 1863–1868.10.1590/1678-5150-pvb-5471
  7. Borges A.A., Santos M.V.O., Nascimento L.E., Lira G.P.O., Praxedes É.A., Oliveira M.F., Silva A.R., Pereira A.F. (2020). Production of collared peccary (Pecari tajacu Linnaeus, 1758) parthenogenic embryos following different oocyte chemical activation and in vitro maturation conditions. Theriogenology, 142: 320–327.10.1016/j.theriogenology.2019.10.016
  8. Brackett B.G., Oliphant G. (1975). Capacitation of rabbit spermatozoa in vitro. Biol. Reprod., 12: 260–274.10.1095/biolreprod12.2.260
  9. Brahmasani S.R., Yelisetti U.M., Katari V., Komjeti S., Lakshmikantan U., Pawar R.M., Sisinthy S. (2013). Developmental ability after parthenogenetic activation of in vitro matured oocytes collected postmortem from deers. Small Rumin. Res., 113: 128–135.10.1016/j.smallrumres.2013.01.010
  10. Cervantes M.P., Palomino J.M., Anzar M., Mapletoft R.J., Adams G.P. (2016). In vivo and in vitro maturation of oocytes collected from superstimulated wood bison (Bison bison athabascae) during the anovulatory and ovulatory seasons. Anim. Reprod. Sci., 173: 87–96.10.1016/j.anireprosci.2016.09.001
  11. Cervantes M.P., Palomino J.M., Anzar M., Mapletoft R.J., Mastromonaco G.F., Adams G.P. (2017). In vitro–production of embryos using immature oocytes collected transvaginally from superstimulated wood bison (Bison bison athabascae). Theriogenology, 92: 103–110.10.1016/j.theriogenology.2017.01.017
  12. Chatiza F.P., Bartels P., Nedambale T.L., Wagenaar G.M. (2013). Sperm–egg interaction and functional assessment of springbok, impala and blesbok cauda epididymal spermatozoa using a domestic cattle in vitro fertilization system. Anim. Reprod. Sci., 143: 8–18.10.1016/j.anireprosci.2013.11.001
  13. Chaves M.G., Miragaya M.H., Capdevielle E.F., Rutter B., Giuliano S.M., Agüero A. (2004). In vitro maturation of vicuna oocytes recovered by surgical aspiration of follicles from superstimulated ovaries. Biocell, 28: 545.
  14. Comizzoli P., Mermillod P., Mauget R. (2000). Reproductive biotechnologies for endangered mammalian species. Reprod. Nutr. Dev., 40: 493–504.10.1051/rnd:2000113
  15. Comizzoli P., Mermillod P., Cognie Y., Chai N., Legendre X., Mauget R. (2001 a). Successful in vitro production of embryos in the red deer (Cervus elaphus) and the sika deer (Cervus nippon). Theriogenology, 55: 649–659.10.1016/S0093-691X(01)00433-2
  16. Comizzoli P., Mauget R., Mermillod P. (2001 b). Assessment of in vitro fertility of deer spermatozoa by heterologous IVF with zona-free bovine oocytes. Theriogenology, 56: 261–274.10.1016/S0093-691X(01)00561-111480618
  17. Fernández S., Sestelo A., Rivolta M., Córdoba M. (2013). Capacitation and acrosome reaction induction on thawed Dama dama deer spermatozoa: glycine effect as cryopreservation diluent supplement. Zool. Sci., 30: 1110–1116.10.2108/zsj.30.1110
  18. Flores-Foxworth G., Coonrod S.A., Moreno J.F., Byrd S.R., Kraemer D.C., Westhusin M. (1995). Interspecific transfer of IVM IVF-derived red sheep (Ovis orientalis gmelini) embryos to domestic sheep (Ovis aries). Theriogenology, 44: 681–690.10.1016/0093-691X(95)00248-7
  19. Gabryś J., Kij B., Kochan J., Bugno-Poniewierska M. (2021). Interspecific hybrids of animals – in nature, breeding and science – a review. Ann. Anim. Sci., 21: 403–415.10.2478/aoas-2020-0082
  20. Gambini A., Duque Rodríguez M., Rodríguez M.B., Briski O., Flores Bragulat A.P., Demergassi N., Losinno L., Salamone D.F. (2020). Horse ooplasm supports in vitro preimplantation development of zebra ICSI and SCNT embryos without compromising YAP1 and SOX2 expression pattern. Plos One, 15: e0238948.10.1371/journal.pone.0238948
  21. García-Álvarez O., Maroto-Morales A., Berlinguer F., Fernández-Santos M.D.R., Esteso M.C., Mermillod P., Ortiz J.A., Ramon M., Pérez-Guzmán M.D., Garde J.J., Soler A.J. (2011). Effect of storage temperature during transport of ovaries on in vitro embryo production in Iberian red deer (Cervus elaphus hispanicus). Theriogenology, 75: 65–72.10.1016/j.theriogenology.2010.07.011
  22. García-Álvarez O., Soler A., Maulen Z., Maroto-Morales A., Iniesta-Cuerda M., Martín-Maestro A., Fernández-Santos M.R., Garde J. (2016). Selection of red deer spermatozoa with different cryoresistance using density gradients. Reprod. Domest. Anim., 51: 895–900.10.1111/rda.12755
  23. Gordon I.J., Hester A.J., Festa-Bianchet M. (2004). The management of wild large herbivores to meet economic, conservation and environmental objectives. Reprod. Domest. Anim., 41: 1021–1031.10.1111/j.0021-8901.2004.00985.x
  24. Hermes R., Göritz F., Portas T.J., Bryant B.R., Kelly J.M., Maclellan L.J., Keeley T., Schwarzenberger F., Walzer C., Schnorrenberg A., Spindler R.E., Saragusty J., Kaandorp S., Hildebrandt T.B. (2009). Ovarian superstimulation, transrectal ultrasound–guided oocyte recovery, and IVF in rhinoceros. Theriogenology, 72: 959–968.10.1016/j.theriogenology.2009.06.014
  25. Herrick J.R. (2019). Assisted reproductive technologies for endangered species conservation: developing sophisticated protocols with limited access to animals with unique reproductive mechanisms. Biol. Reprod., 100: 1158–1170.10.1093/biolre/ioz025
  26. Hildebrandt T.B., Hermes R., Colleoni S., Diecke S., Holtze S., Renfree M.B., Stejskal J., Hayashi K., Drukker M., Loi P., Göritz F., Lazzari G., Galli C. (2018). Embryos and embryonic stem cells from the white rhinoceros. Nat. Commun., 9: 1–9.10.1038/s41467-018-04959-2
  27. Hinrichs K., Love C.C., Brinsko S.P., Choi Y.H., Varner D.D. (2002). In vitro fertilization of in vitro-matured equine oocytes: effect of maturation medium, duration of maturation, and sperm calcium ionophore treatment, and comparison with rates of fertilization in vivo after oviductal transfer. Biol. Reprod., 67: 256–262.10.1095/biolreprod67.1.256
  28. IUCN – International Union for Conservation of Nature and Natural Resources (homepage on the Internet). Red list of threatened species (cited 2021 March 01). Available from: http://www.iucnredlist.org/details/41777/0.
  29. Johnston L.A., Parrish J.J., Monson R., Leibfried-Rutledge L., Susko-Parrish J.L., Northey D.L., Rutledge J.J., Simmons L.G. (1994). Oocyte maturation, fertilization and embryo development in vitro and in vivo in the gaur (Bos gaurus). Reproduction, 100: 131–136.10.1530/jrf.0.1000131
  30. Kaneko T., Ito H., Sakamoto H., Onuma M., Inoue-Murayama M. (2014). Sperm preservation by freeze-drying for the conservation of wild animals. PloS One, 9: e113381.10.1371/journal.pone.0113381
  31. Krishnakumar S., Whiteside D.P., Elkin B., Thundathil J.C. (2015). Effect of reproductive seasonality on gamete quality in the North American bison (Bison bison bison). Reprod. Domest. Anim., 50: 206–213.10.1111/rda.12471
  32. Leemans B., Stout T.A., Schauwer C., Heras S., Nelis H., Hoogewijs M., Soom A.V., Gadella B.M. (2019). Update on mammalian sperm capacitation: how much does the horse differ from other species? Reproduction, 157: 181–197.10.1530/REP-18-054130721132
  33. Li Z., Song X., Yin S., Yan J., Lv P., Shan H., Cui K., Liu H., Liu Q. (2021). Single-Cell RNA-seq revealed the gene expression pattern during the in vitro maturation of donkey oocytes. Genes, 12: 1–15.10.3390/genes12101640
  34. Liu B., Cui Y., Yu S. (2013). Effect of swim-up and percoll treatment on sperm quality and in vitro embryo development in yak. J. Integr. Agric., 12: 2235–2242.10.1016/S2095-3119(13)60378-0
  35. Locatelli Y., Cognié Y., Vallet J.C., Baril G., Verdier M., Poulin N., Legendre X., Mermillod P. (2005). Successful use of oviduct epithelial cell coculture for in vitro production of viable red deer (Cervus elaphus) embryos. Theriogenology, 64: 1729–1739.10.1016/j.theriogenology.2005.04.002
  36. Locatelli Y., Hendriks A., Vallet J.C., Baril G., Duffard N., Bon N., Ortiz K., Scala C., Maurel M-C., Mermillod P., Legendre X. (2012). Assessment LOPU–IVF in Japanese sika deer (Cervus nippon nippon) and application to Vietnamese sika deer (Cervus nippon pseudaxis) a related subspecies threatened with extinction. Theriogenology, 78: 2039–2049.10.1016/j.theriogenology.2012.07.025
  37. Macías-García B., González-Fernández L., Matilla E., Hernández N., Mijares J., Sánchez-Margallo F.M. (2018). Oocyte holding in the Iberian red deer (Cervus elaphus hispanicus): Effect of initial oocyte quality and epidermal growth factor addition on in vitro maturation. Reprod. Domest. Anim., 53: 243–248.10.1111/rda.13099
  38. Mahesh Y.U., Rao B.S., Suman K., Lakshmikantan U., Charan K.V., Gibence H.R.W., Shivaji S. (2011). In vitro maturation and fertilization in the nilgai (Boselaphus tragocamelus) using oocytes and spermatozoa recovered post-mortem from animals that had died because of foot and mouth disease outbreak. Reprod. Domest. Anim., 46: 832–839.10.1111/j.1439-0531.2011.01751.x
  39. Malakoutikhah S., Fakheran S., Hemami M.R., Tarkesh M., Senn J. (2020). Assessing future distribution, suitability of corridors and efficiency of protected areas to conserve vulnerable ungulates under climate change. Divers. Distrib., 26: 1383–1396.10.1111/ddi.13117
  40. Mastromonaco G.F., Songsasen N. (2020). Reproductive technologies for the conservation of wildlife and endangered species. In: Reproductive technologies in animals, Presicce G.A. (ed.). Academic Press, Rome, Italy, pp. 99–117.10.1016/B978-0-12-817107-3.00007-2
  41. Meintjes M., Bezuidenhout C., Bartels P., Visser D.S., Meintjes J., Loskutoff N.M., Fourie F. L., Barry D.M., Godke R.A. (1997). In vitro maturation and fertilization of oocytes recovered from free-ranging Burchell’s zebra (Equus burchelli) and Hartmann’s zebra (Equus zebra hartmannae). J. Zoo Wildl. Med., 28: 251–259.
  42. Mohr D., Cohnstaedt L.W., Topp W. (2005). Wild boar and red deer affect soil nutrients and soil biota in steep oak stands of the Eifel. Soil Biol. Biochem., 37: 693–700.10.1016/j.soilbio.2004.10.002
  43. O’Brien J.K., Roth T.L. (2000). Functional capacity and fertilizing longevity of frozen–thawed scimitar–horned oryx (Oryx dammah) spermatozoa in a heterologous in vitro fertilization system. Reprod. Fertil. Dev., 12: 413–421.10.1071/RD00105
  44. Owiny O.D., Barry D.M., Agaba M., Godke R.A. (2009). In vitro production of cattle×buffalo hybrid embryos using cattle oocytes and African buffalo (Syncerus caffer caffer) epididymal sperm. Theriogenology, 71: 884–894.10.1016/j.theriogenology.2008.10.016
  45. Palomino J.M., Mastromonaco G.F., Cervantes M.P., Mapletoft R.J., Anzar M., Adams G.P. (2020). Effect of season and superstimulatory treatment on in vivo and in vitro embryo production in wood bison (Bison bison athabascae). Reprod. Domest. Anim., 55: 54–63.10.1111/rda.13580
  46. Parrish J.J., Susko-Parrish J., Winer M.A., First N.L. (1988). Capacitation of bovine sperm by heparin. Biol. Reprod., 38: 1171–1180.10.1095/biolreprod38.5.1171
  47. Piliszek A., Madeja Z.E. (2018). Pre-implantation development of domestic animals. Curr. Top. Dev. Biol., 128: 267–294.10.1016/bs.ctdb.2017.11.005
  48. Pradieé J., Sánchez-Calabuig M.J., Castaño C., O’Brien E., Esteso M.C., Beltrán-Breña P., Maillo V., Santiago-Moreno J., Rizos D. (2018). Fertilizing capacity of vitrified epididymal sperm from Iberian ibex (Capra pyrenaica). Theriogenology, 108, 314–320.10.1016/j.theriogenology.2017.11.02129288975
  49. Ptak G., Clinton M., Barboni B., Muzzeddu M., Cappai P., Tischner M., Loi P. (2002). Preservation of the wild European mouflon: the first example of genetic management using a complete program of reproductive biotechnologies. Biol. Reprod., 66: 796–801.10.1095/biolreprod66.3.796
  50. Pukazhenthi B.S. (2016). Saving wild ungulate diversity through enhanced management and sperm cryopreservation. Reprod. Fertil. Dev., 28: 1133–1144.10.1071/RD15412
  51. Rao B.S., Mahesh,Y.U., Lakshmikantan U.R., Suman K., Charan K.V., Shivaji S. (2010). Developmental competence of oocytes recovered from postmortem ovaries of the endangered Indian blackbuck (Antilope cervicapra). J. Reprod. Dev., 56: 623–629.10.1262/jrd.10-059H
  52. Rath D., Long C.R., Dobrinsky J.R., Welch G.R., Schreier L.L., Johnson L.A. (1999). In vitro production of sexed embryos for gender preselection: high-speed sorting of X-chromosome-bearing sperm to produce pigs after embryo transfer. J. Anim. Sci., 77: 3346–3352.10.2527/1999.77123346x
  53. Ratto M., Gomez C., Berland M., Adams G.P. (2007). Effect of ovarian superstimulation on COC collection and maturation in alpacas. Anim. Reprod. Sci., 97: 246–256.10.1016/j.anireprosci.2006.02.002
  54. Rizos D., Ward F., Duffy P.A.T., Boland M.P., Lonergan P. (2002). Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol. Reprod. Dev., 61: 234–248.10.1002/mrd.1153
  55. Rola L.D., Zanetti E.S., Del Collado M., Peroni E.D.F.C., Duarte J.M.B. (2021). Collection and in vitro maturation of Mazama gouazoubira (brown brocket deer) oocytes obtained after ovarian stimulation. Zygote, 29: 216–222.10.1017/S0967199420000787
  56. Roth T.L., Weiss R.B., Buff J.L., Bush L.M., Wildt D.E., Bush M. (1998). Heterologous in vitro fertilization and sperm capacitation in an endangered African antelope, the scimitar– horned oryx (Oryx dammah). Biol. Reprod., 58: 475–482.10.1095/biolreprod58.2.475
  57. Santiago-Moreno J., Esteso M.C., Castaño C., Toledano-Díaz A., Rodríguez E., López-Sebastián A. (2014). Sperm selection by Capripure® density-gradient centrifugation versus the dextran swim-up procedure in wild mountain ruminants. Anim. Reprod. Sci., 149: 178–186.10.1016/j.anireprosci.2014.07.003
  58. Schook M.W., Wildt D.E., Weiss R.B., Wolfe B.A., Archibald K.E., Pukazhenthi B.S. (2013). Fundamental studies of the reproductive biology of the endangered Persian onager (Equus hemionus onager) result in first wild equid offspring from artificial insemination. Biol. Reprod., 89: 41–51.10.1095/biolreprod.113.110122
  59. Siriaroonrat B., Comizzoli P., Songsasen N., Monfort S.L., Wildt D.E., Pukazhenthi B.S. (2010). Oocyte quality and estradiol supplementation affect in vitro maturation success in the white-tailed deer (Odocoileus virginianus). Theriogenology, 73: 112–119.10.1016/j.theriogenology.2009.08.007
  60. Sontakke S.D. (2018). Monitoring and controlling ovarian activities in wild ungulates. Theriogenology, 109: 31–41.10.1016/j.theriogenology.2017.12.008
  61. Stoops M.A., O’Brien J.K., Roth T.L. (2011). Gamete rescue in the African black rhinoceros (Diceros bicornis). Theriogenology, 76: 1258–1265.10.1016/j.theriogenology.2011.05.032
  62. Tervit H.R., Whittingham D.G., Rowson L.E.A. (1972). Successful culture in vitro of sheep and cattle ova. Reproduction, 30: 493–497.10.1530/jrf.0.0300493
  63. Thongphakdee A., Berg D.K., Tharasanit T., Thongtip N., Tipkantha W., Punkong C., Tongthainan D., Noimoon S., Maikeaw U., Kajornklin N., Siriaroonrat B., Comizzoli P., Kamolnorranath S. (2017). The impact of ovarian stimulation protocol on oocyte quality, subsequent in vitro embryo development, and pregnancy after transfer to recipients in Eld’s deer (Rucervus eldii thamin). Theriogenology, 91: 134–144.10.1016/j.theriogenology.2016.12.021
  64. Trasorras V.L., Chaves M.G., Miragaya M.H., Pinto M., Rutter B., Flores M., Agüero A. (2009). Effect of eCG superstimulation and buserelin on cumulus–oocyte complexes recovery and maturation in llamas (Lama glama). Reprod. Domest. Anim., 44: 359–364.10.1111/j.1439-0531.2007.00972.x
  65. Tulake K., Yanagawa Y., Takahashi Y., Katagiri S., Higaki S., Koyama K., Wang X., Li H. (2014). Effects of ovarian storage condition on in vitro maturation of Hokkaido sika deer (Cervus nippon yesoensis) oocytes. Jpn. J. Vet., 62: 187–192.
  66. Velamazan M., Perea R., Bugalho M.N. (2020). Ungulates and ecosystem services in Mediterranean woody systems: A semi-quantitative review. J. Nat. Conserv., 55: 125837.10.1016/j.jnc.2020.125837
  67. Yin Y., Tang L., Zhang P., Kong D., Wang Z., Guan J., Song G., Tan B., Li Z. (2013). Optimizing the conditions for in vitro maturation and artificial activation of sika deer (Cervus nippon hortulorum) oocytes. Reprod. Domest. Anim., 48: 27–32.10.1111/j.1439-0531.2012.02020.x
DOI: https://doi.org/10.2478/aoas-2022-0013 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1151 - 1162
Submitted on: Aug 24, 2021
Accepted on: Jan 4, 2022
Published on: Oct 29, 2022
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Maria Valéria de Oliveira Santos, Alexandre Rodrigues Silva, Alexsandra Fernandes Pereira, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.