Have a personal or library account? Click to login
Effects of dietary Gracilaria persica on the intestinal microflora, thyroid hormones, and resistance against Aeromonas hydrophila in Persian sturgeon (Acipenser persicus) Cover

Effects of dietary Gracilaria persica on the intestinal microflora, thyroid hormones, and resistance against Aeromonas hydrophila in Persian sturgeon (Acipenser persicus)

Open Access
|Jul 2022

References

  1. Adel M., Dawood M.A.O., Gholamhosseini A., Sakhaie F., Banaee M. (2021 a). Effect of the extract of lemon verbena (Aloysia citrodora) on the growth performance, digestive enzyme activities, and immune-related genes in Siberian sturgeon (Acipenser baerii). Aquaculture, 541: 736797.10.1016/j.aquaculture.2021.736797
  2. Adel M., Omidi A.H., Dawood M.A.O., Karimi B., Shekarabi S.P.H. (2021 b). Dietary Gracilaria persica mediated the growth performance, fillet colouration, and immune response of Persian sturgeon (Acipenser persicus). Aquaculture, 530: 735950.10.1016/j.aquaculture.2020.735950750224232981978
  3. An B.N.T., Anh N.T.N. (2020). Co-culture of Nile tilapia (Oreochromis niloticus) and red seaweed (Gracilaria tenuistipitata) under different feeding rates: effects on water quality, fish growth and feed efficiency. J. Appl. Phycol., 32: 2031–2040.10.1007/s10811-020-02110-7
  4. Aramli M.S., Kamangar B., Nazari R.M. (2015). Effects of dietary β-glucan on the growth and innate immune response of juvenile Persian sturgeon, Acipenser persicus. Fish Shellfish Immunol., 47: 606–610.10.1016/j.fsi.2015.10.004
  5. Baharloei M., Heidari B., Zamani H., Hadavi M. (2020). Effects of Pro-Tex® on the expression of Hsp70 gene and immune response parameters in the Persian sturgeon fingerlings, Acipenser persicus, infected with Aeromonas hydrophila. J. Appl. Ichthyol., 36: 393–401.10.1111/jai.14045
  6. Bhat I.A., Rather M.A., Saha R., Ganie P.A., Sharma R. (2017). Identification and expression analysis of thyroid-stimulating hormone receptor (TSHR) in fish gonads following LHRH Treatment. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci., 87: 719–726.10.1007/s40011-015-0640-8
  7. Blanton M.L., Specker J.L. (2007). The hypothalamic-pituitary-thyroid (HPT) axis in fish and its role in fish development and reproduction. Crit. Rev. Toxicol., 37:97–115.10.1080/10408440601123529
  8. Bouwmeester M.M., Goedknegt M.A., Poulin R., Thieltges D.W. (2021). Collateral diseases: Aquaculture impacts on wildlife infections. J. Appl. Ecol., 58: 453–464.10.1111/1365-2664.13775
  9. Dawood M.A.O. (2021) Nutritional immunity of fish intestines: important insights for sustainable aquaculture. Rev. Aquac.,13: 642–663.10.1111/raq.12492
  10. Dawood M.A.O., Koshio S. (2020). Application of fermentation strategy in aquafeed for sustainable aquaculture. Rev. Aquac., 12: 987–1002.10.1111/raq.12368
  11. Dawood M.A.O., Koshio S., Ishikawa M., Yokoyama S. (2016). Effects of dietary inactivated Pediococcus pentosaceus on growth performance, feed utilization and blood characteristics of red sea bream, Pagrus major juvenile. Aquac. Nutr., 22: 923–932.10.1111/anu.12314
  12. Dawood M.A.O., El Basuini M.F., Zaineldin A.I., Yilmaz S., Hasan M.T., Ahmadifar E., El Asely A.M., Abdel-Latif H.M.R., Alagawany M., Abu-Elala N.M., Van Doan H., Sewilam H. (2021). Antiparasitic and antibacterial functionality of essential oils: an alternative approach for sustainable aquaculture. Pathogens, 10: 185.10.3390/pathogens10020185
  13. FAO (2020). The state of world fisheries and aquaculture 2020. Sustainability in action. Rome. Francavilla M., Franchi M., Monteleone M., Caroppo C. (2013). The red seaweed Gracilaria gracilis as a multi-products source. Mar Drugs., 11: 3754–3776.10.3390/md11103754382613424084791
  14. Galappaththi E.K., Ichien S.T., Hyman A.A., Aubrac C.J., Ford J.D. (2020). Climate change adaptation in aquaculture. Rev. Aquac., 12: 2160–2176.10.1111/raq.12427
  15. Hayatgheib N., Moreau E., Calvez S., Lepelletier D., Pouliquen H.J.A.I. (2020). A review of functional feeds and the control of Aeromonas infections in freshwater fish. Aquac. Int., 1–41.10.1007/s10499-020-00514-3
  16. Hindu S.V., Chandrasekaran N., Mukherjee A., Thomas J. (2019). A review on the impact of seaweed polysaccharide on the growth of probiotic bacteria and its application in aquaculture. Aquac. Int., 27: 227–238.10.1007/s10499-018-0318-3
  17. Hoseinifar S.H., Yousefi S., Capillo G., Paknejad H., Khalili M., Tabarraei A., Van Doan H., Spanò N., Faggio C. (2018). Mucosal immune parameters, immune and antioxidant defense-related genes expression and growth performance of zebrafish (Danio rerio) fed on Gracilaria gracilis powder. Fish Shellfish Immunol., 83: 232–237.10.1016/j.fsi.2018.09.046
  18. Hoseinifar S.H., Shakouri M., Doan H.V., Shafiei S., Yousefi M., Raeisi M., Yousefi S., Harikrishnan R., Reverter M. (2020). Dietary supplementation of lemon verbena (Aloysia citrodora) improved immunity, immune-related genes expression and antioxidant enzymes in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol., 99: 379–385.10.1016/j.fsi.2020.02.006
  19. Jafari A., Keramat Amirkolaie A., Oraji H., Kousha M. (2020). Bio-sorption of ammonium ions by dried red marine algae (Gracilaria persica): Application of response surface methodology. Iran. J. Fish. Sci., 19: 1967–1980.
  20. Jeliani Z.Z., Yousefzadi M., Pour J.S., Toiserkani H. (2018). Growth, phytochemicals, and optimal timing of planting Gracilariopsis persica: an economic red seaweed. J. Appl. Phycol., 30: 525–533.10.1007/s10811-017-1217-0
  21. Kari Z.A., Kabir M.A., Mat K., Rusli N.D., Razab M.K.A.A., Ariff N.S.N.A., Edinur H.A., Rahim M.Z.A., Pati S., Dawood M.A.O., Wei L.S. (2021). The possibility of replacing fish meal with fermented soy pulp on the growth performance, blood biochemistry, liver, and intestinal morphology of African catfish (Clarias gariepinus). Aquac. Rep., 21: 100815.10.1016/j.aqrep.2021.100815
  22. Kari Z.A., Kabir M.A., Dawood M.A.O., Razab M.K.A.A., Ariff N.S.N.A., Sarkar T., Pati S., Edinur H.A., Mat K., Ismail T.A., Wei L.S. (2022). Effect of fish meal substitution with fermented soy pulp on growth performance, digestive enzyme, amino acid profile, and immune-related gene expression of African catfish (Clarias gariepinus). Aquaculture, 546: 737418.10.1016/j.aquaculture.2021.737418
  23. Kiadaliri M., Firouzbakhsh F., Deldar H. (2020). Effects of feeding with red algae (Laurencia caspica) hydroalcoholic extract on antioxidant defense, immune responses, and immune gene expression of kidney in rainbow trout (Oncorhynchus mykiss) infected with Aeromonas hydrophila. Aquaculture, 526: 735361.10.1016/j.aquaculture.2020.735361
  24. Kulshreshtha G., Rathgeber B., MacIsaac J., Boulianne M., Brigitte L., Stratton G., Thomas N.A., Critchley A.T., Hafting J., Prithiviraj B. (2017). Feed supplementation with red seaweeds, Chondrus crispus and Sarcodiotheca gaudichaudii, reduce Salmonella enteritidis in laying hens. Front. Microbiol., 8: 2991–3001.10.3389/fmicb.2017.00567
  25. Lim K.C., Yusoff F.M., Shariff M., Kamarudin M.S. (2018). Astaxanthin as feed supplement in aquatic animals. Rev. Aquac., 10: 738–773.10.1111/raq.12200
  26. López-Pedrouso M., Lorenzo J.M., Cantalapiedra J., Zapata C., Franco J.M., Franco D. (2020). Chapter five – aquaculture and by-products: Challenges and opportunities in the use of alternative protein sources and bioactive compounds. In: Advances in food and nutrition research, J.M. Lorenzo, F.J. Barba (eds). Academic Press, 92: 127–185.10.1016/bs.afnr.2019.11.001
  27. Lulijwa R., Rupia E.J., Alfaro A.C. (2020). Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Rev. Aquac., 12: 640–663.10.1111/raq.12344
  28. Mohan K., Ravichandran S., Muralisankar T., Uthayakumar V., Chandirasekar R., Seedevi P., Abirami R.G., Rajan D.K. (2019). Application of marine-derived polysaccharides as immunostimulants in aquaculture: A review of current knowledge and further perspectives. Fish Shellfish Immunol., 86: 1177–1193.10.1016/j.fsi.2018.12.072
  29. Mzula A., Wambura P.N., Mdegela R.H., Shirima G.M. (2019). Current state of modern biotechnological-based Aeromonas hydrophila vaccines for aquaculture: A systematic review. Biomed Res. Int., 1: 3768948.10.1155/2019/3768948
  30. Peixoto M.J., Salas-Leitón E., Pereira L.F., Queiroz A., Magalhães F., Pereira R., Abreu H., Reis P.A., Gonçalves J.F.M., de Almeida Ozório R.O. (2016). Role of dietary seaweed supplementation on growth performance, digestive capacity and immune and stress responsiveness in European seabass (Dicentrarchus labrax). Aquac. Rep. 3: 189–197.10.1016/j.aqrep.2016.03.005
  31. Safavi S.V., Kenari A.A., Tabarsa M., Esmaeili M. (2019). Effect of sulfated polysaccharides extracted from marine macroalgae (Ulva intestinalis and Gracilariopsis persica) on growth performance, fatty acid profile, and immune response of rainbow trout (Oncorhynchus mykiss). J. Appl. Phycol., 31: 4021–4035.10.1007/s10811-019-01902-w
  32. Sallam K.I. (2007). Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon. Food Control., 18: 566–575.10.1016/j.foodcont.2006.02.002
  33. Sanjeewa K.KA., Kang N., Ahn G., Jee Y. Kim Y.T., Jeon Y.J. (2018). Bioactive potentials of sulfated polysaccharides isolated from brown seaweed Sargassum spp in related to human health applications: a review. Food Hydrocoll., 81: 200–208.10.1016/j.foodhyd.2018.02.040
  34. Thépot V., Campbell A.H., Rimmer M.A., Paul N.A. (2021). Meta-analysis of the use of seaweeds and their extracts as immunostimulants for fish: a systematic review. Rev. Aquac., 13: 907–933.10.1111/raq.12504
  35. Walsh A.M., Sweeney T., O’Shea C.J., Doyle D.N., O’Doherty J.V. (2013). Effect of dietary laminarin and fucoidan on selected microbiota, intestinal morphology and immune status of the newly weaned pig. Br. J. Nutr., 110: 1630–1638.10.1017/S0007114513000834
  36. Wijnana A., Adhika P., Kasanah N. (2018). Bioactivity of red seaweed Gracilaria arcuata against Aeromonas hydrophila and Vibrio sp. J. Nat. Prod., 8: 147–152.10.2174/1573401313666170925161408
DOI: https://doi.org/10.2478/aoas-2022-0003 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1057 - 1062
Submitted on: Aug 5, 2021
Accepted on: Nov 25, 2021
Published on: Jul 19, 2022
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Fahimeh Sakhaie, Milad Adel, Seyed Pezhman Hosseini Shekarabi, Mahmoud A.O. Dawood, Amin Gholamhosseini, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.