References
- Akhtar M., Guo S., Guo Y. F., Zahoor A., Shaukat A., Chen Y., Umar T., Deng G., Guo M. (2020). Upregulated-gene expression of Pro-inflammatory cytokines TNF-α, IL-1β and IL-6 via TLRs following NF-κB and MAPKs in bovine mastitis. Acta Tropica, 207: 105458.10.1016/j.actatropica.2020.105458
- Alluwaimi A. M., Leutenegger C. M., Farver T. B., Rossitto P. V., Smith W. L., Cullor J. S. (2003). The cytokine markers in Staphylococcus aureus mastitis of bovine mammary gland. J Vet. Med., 50: 105-111.10.1046/j.1439-0450.2003.00628.x
- Bagnicka E., Kawecka-Grochocka E., Pawlina-Tyszko K., Zalewska M., Kapusta A., Kościuczuk E., Marczak S., Ząbek T. (2021). MicroRNA expression profile in bovine mammary gland parenchyma infected by coagulase-positive or coagulase-negative staphylococci. Vet. Res., 521: 1–20.10.1186/s13567-021-00912-2
- Baker E. N., Baker H.M. (2005). Molecular structure, binding properties and dynamics of lactoferrin. Cell. Mol. Life Sci., 62: 2531–2539.10.1007/s00018-005-5368-9
- Bannerman D.D. (2009). Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows. J. Anim. Sci., 87: 10–25.10.2527/jas.2008-1187
- Bannerman D.D., Paape M. J., Lee J.W., Zhao X., Hope J.C., Rainard P. (2004). Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clin. Diag. Lab. Immunol., 11: 463–472.10.1128/CDLI.11.3.463-472.2004
- Bionaz M., Loor J.J. (2007). Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle. Physiol. Genom., 29: 312–319.10.1152/physiolgenomics.00223.2006
- Cáceres J. F., Kornblihtt A.R. (2002). Alternative splicing: multiple control mechanisms and involvement in human disease. Trends in Genet., 18: 186–193.10.1016/S0168-9525(01)02626-9
- Chacko E., Ranganathan S. (2009). Genome-wide analysis of alternative splicing in cow: implications in bovine as a model for human diseases. BMC Genom., 10: 11.10.1186/1471-2164-10-S3-S11
- Chaneton L., Tirante L., Maito J., Chaves J., Bussmann L. E. (2008). Relationship between milk lactoferrin and etiological agent in the mastitic bovine mammary gland. J Dairy Sci., 91: 1865–1873.10.3168/jds.2007-0732
- Ellison R. T. (1994). The effects of lactoferrin on gram-negative bacteria. Adv. Exp. Med. Biol., 357: 71–90.10.1007/978-1-4615-2548-6_8
- Ferens W. A., Goff W. L., Davis W. C., Fox L. K., Deobald C., Hamilton M.J., Bohach G.A. (1998). Induction of type-2 cytokines by a Staphylococcal enterotoxins superantigen. J. Nat. Tox., 7: 193–213.
- Fonseca I., Silva P. V., Lange C. C., Guimarães M. F., Morena Del Cambre M., Weller M. A., Silva Sousa K. R., Lopes P. S., Guimarães J. D., Guimarãe S. E. F. (2009). Expression profile of genes associated with mastitis in dairy cattle. Genet. Mol. Biol., 32: 776–781.10.1590/S1415-47572009005000074
- Galante P. A., Sakabe N. J., Kirschbaum-Slager N., de Souza S. J. (2004). Detection and evaluation of intron retention events in the human transcriptome. RNA, 10: 757–765.10.1261/rna.5123504
- Garcia-Blanco M. A., Baraniak A.P. Lasda, E. L. (2004). Alternative splicing in disease and therapy. Nat. Biotechnol., 22: 535–546.10.1038/nbt964
- Gifford J. L., Hunter H. N., Vogel H. J. (2005). Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell. Mol. Life Sci., 62: 2588–2598.10.1007/s00018-005-5373-z
- Hagiwara S., Kawai K., Anri A., Nagahata H. (2003). Lactoferrin concentrations in milk from normal and subclinical mastitic cows. J. Vet. Med. Sci., 65: 319–323.10.1292/jvms.65.319
- Huang J. M., Wang Z. Y., Ju Z. H., Wang C. F., Li Q. L., Sun T., Hou Q. L., Hang S. Q., Hou M. H., Zhong J. F. (2011). Two splice variants of the bovine lactoferrin gene identified in Staphylococcus aureus isolated from mastitis in dairy cattle. Genet. Mol. Res., 10: 3199–3203.10.4238/2011.December.21.1
- Ju Z., Jiang Q., Liu G., Wang X., Luo G., Zhang Y., Zhang J., Zhong J., Huang J. (2018). Solexa sequencing and custom micro RNA chip reveal repertoire of microRNAs in mammary gland of bovine suffering from natural infectious mastitis. Anim. Genet., 49: 3–18.10.1111/age.12628
- Kawai K., Hagiwara S., Anri A., Nagahata H. (1999). Lactoferrin concentration in milk of bovine clinical mastitis. Vet. Res. Commun., 23: 391–398.10.1023/A:1006347423426
- Kim J.H., Yoo B. C., Yang W.S., Kim E., Hong S., Cho, J.Y. (2016). The role of protein arginine methyltransferases in inflammatory responses. Mediat Inflamm. 4028353.10.1155/2016/4028353479314027041824
- Komine K. I., Komine Y., Kuroishi T., Kobayashi J., Obara Y., Kumagai K. (2005). Small molecule lactoferrin with an inflammatory effect but no apparent antibacterial activity in mastitic mammary gland secretion. J. Vet. Med., 67: 667–677.10.1292/jvms.67.667
- Korwin-Kossakowska A., Ropka-Molik K., Ząbek T., Szmatoła T., Brzozowska P., Gralak B., Kawecka-Grochocka E. Bagnicka E. (2020). Structural and functional analysis of the signaling lymphocytic activation molecule family 7 SLAMF7 gene in response to infection with coagulase-negative and coagulase-positive staphylococci. J Dairy Sci., 103: 8317–8329.10.3168/jds.2019-17398
- Kościuczuk E. M., Lisowski P., Jarczak J., Krzyżewski J., Zwierzchowski L. Bagnicka E., (2014). Expressions patterns of β-defensin and cathelicidin genes in parenchyma of bovine mammary gland infected with coagulase-positive or coagulase-negative Staphylococci. BMC Vet. Res., 6: 246.10.1186/s12917-014-0246-z
- Le Hir H., Charlet-Berguerand N., de Franciscis V., Thermes C., (2002). 5’-End RET splicing: absence of variants in normal tissues and intron retention in pheochromocytomas. Oncology, 63: 84–91.10.1159/000065725
- Li, N., Zhang J., Liao D., Yang L., Wang Y., Hou S. (2017). Association between C4, C4A, and C4B copy number variations and susceptibility to autoimmune diseases: a meta-analysis. Sci Rep., 7: 42628.10.1038/srep42628
- Li Z., Zhai M., Wang H., Chen L., Wang L., Ru C., Song A., Liu X. (2014). Identification of splice variants, expression analysis and single nucleotide polymorphisms of the PRMT2 gene in dairy cattle. Gene, 539: 37–43.10.1016/j.gene.2014.01.065
- Merle N.S., Noe R., Halbwachs-Mecarelli L., Fremeaux-Bacchi V., Roumenina L.T. (2015). Complement system part II: role in immunity. Front Immunol, 6: 257.10.3389/fimmu.2015.00257
- Nash D.L., Rogers G.W., Cooper J.B., Hargrove G.L., Keown J.F. (2003). Heritability of intramammary infections at first parturition and relationships with sire transmitting abilities for somatic cell score, udder type traits, productive life, and protein yield. J. Dairy Sci., 86: 2684–2695.10.3168/jds.S0022-0302(03)73864-8
- Oviedo-Boyso J., Valdez-Alarcón J. J., Cajero-Juárez M., Ochoa-Zarzosa A., López-Meza J. E., Bravo-Patiño A., Baizabal-Aguirre V.M. (2007). Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J. Infect, 54: 399–409.10.1016/j.jinf.2006.06.010
- Pawlik A., Sender G., Sobczyńska M., Korwin-Kossakowska A., Lassa H., Oprządek J. (2014 a). Lactoferrin gene variants, their expression in the udder and mastitis susceptibility in dairy cattle. Anim. Prod. Sci., 55: 999–1004.10.1071/AN13389
- Pawlik A., Sender G., Sobczyńska M., Korwin-Kossakowska A., Oprządek J., Lukaszewicz M. (2014 b). Association between lactoferrin single nucleotide polymorphisms and milk production traits in Polish Holstein cattle. Arch. Tierz.- Arch. Anim. Breed., 57: 1–12.10.7482/0003-9438-57-027
- Raj A., Kulangara V., VareedT. P., Melepat D. P., Chattothayil L., Chullipparambil S. (2021). Variations in the levels of acute-phase proteins and lactoferrin in serum and milk during bovine subclinical mastitis. J. Dairy Res., 88: 321–325.10.1017/S002202992100056X
- Rambeaud M., Almeida R.A., Pighetti G.M., Oliver S.P. (2003). Dynamics of leukocytes and cytokines during experimentally induced Streptococcus uberis mastitis. Vet. Immunol. Immunopathol., 96: 193–205.10.1016/j.vetimm.2003.08.008
- Redwan E.M., Uversky V.N., El-Fakharany E.M., Al-Mehdar H. (2014). Potential lactoferrin activity against pathogenic viruses. Comp. Rendus Biol., 337: 581–595.10.1016/j.crvi.2014.08.003
- Rio D.C. (1991). Regulation of Drosophila P element transposition. Trend. Genet., 7: 282–287.10.1016/0168-9525(91)90176-Q
- Shuster D.E., Kehrli M.E., Stevens M.G. (1993). Cytokine production during endotoxin-induced mastitis in lactating dairy cows. Am. J. Vet. Res., 54: 80–85.
- Stamm S., Ben-Ari S., Rafalska I., Tang Y., Zhang Z., Toiber D., Thanaraj T.A., Soreq H. (2005). Function of alternative splicing. Gene, 344: 1–20.10.1016/j.gene.2004.10.022
- Strzelecki J. (2009). Editor. NRIAP-INRA, Standard of ruminants’ feeding: Nutrient value of French and domestic fodders for ruminants. National Research Institute of Animal Production, Kraków, Poland, pp. 21–49.
- Swanson K.M., Stelwagen K., Dobson J., Henderson H.V., Davis S.R., Farr V.C., Singh K. (2009). Transcriptome Profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. J. Dairy Sci., 92: 117–129.10.3168/jds.2008-1382
- Wang E.T., Sandberg R., Luo S., Khrebtukova I., Zhang L., Mary C., Kingsmore S.F., Schroth G.P., Burge C.B. (2008). Alternative isoform regulation in human tissue transcriptomes. Nature, 456: 470–476.10.1038/nature07509
- Wang X.G., Ju Z.H., Hou M.H., Jiang Q., Yang C.H., Zhang Y., Sun Y., Li R.L., Wang C.F., Zhong J.F., Huang J.M. (2016). Deciphering transcriptome and complex alternative splicing transcripts in mammary gland tissues from cows naturally infected with Staphylococcus aureus mastitis. Plos One, 11: e0167666.10.1371/journal.pone.0167666
- Ward P. P., Paz E., Conneely O.M. (2005). Multifunctional roles of lactoferrin: a critical overview. Cell. Mol. Life Sci., 62: 2540–2548.10.1007/s00018-005-5369-8
- Wellnitz O., Kerr D.E. (2004). Cryopreserved bovine mammary cells to model epithelial response to infection. Vet. Immunol. Immunopathol., 101: 191–202.10.1016/j.vetimm.2004.04.019
- Wellnitz O., Berger U., Schaeren W., Bruckmaier R.M. (2012). Mastitis severity induced by two Streptococcus uberis strains is reflected by the mammary immune response in vitro. Schweizer Arch. Tierheilkunde, 154: 317.10.1024/0036-7281/a000355
- Yang L., Guo R., Ju Z., Wang X., Jiang Q., Liu Y., Zhao H., He K., Li J., Huang J. (2019). Production of an aberrant splice variant of CCL5 is not caused by genetic mutation in the mammary glands of mastitis infected Holstein cows. Mol. Med. Rep., 19: 4159–4166.10.3892/mmr.2019.10103
- Yang Y., Huang J.M., Ju Z.H., Li Q.L., Zhou L., Li R.L., Li J.B., Shi F.X., Zhong J.F., Wang C.F. (2012). Increased expression of a novel splice variant of the complement component 4 (C4A) gene in mastitis-infected dairy cattle. Genet. Mol. Res., 11: 2909–2916.10.4238/2012.May.18.12