Have a personal or library account? Click to login

The Effect of Supplementation with β-Hydroxy-β-Methylbutyric Acid (HMB) to Pregnant Sows on the Mucosal Structure, Immunolocalization of Intestinal Barrier Proteins, VIP and Leptin in the Large Intestine in their Offspring

Open Access
|Jan 2023

References

  1. Abot A., Cani P.D., Knauf C. (2018). Impact of intestinal peptides on the enteric nervous system: novel approaches to control glucose metabolism and food intake. Front. Endocrinol., 9: 328.10.3389/fendo.2018.00328
  2. Baptista I.L., Silva W.J., Artiol G.G., Guilherme J.P.L.F., Leal M.L., Aoki M.S., Miyabara E.H., Moriscot A.S. (2013). Correction: leucine and HMB differentially modulate proteasome system in skeletal muscle under different sarcopenic conditions. PLoS One, 8: 10.1371.10.1371/annotation/9060434b-c1df-4d52-8cda-88b9fbfaea51
  3. Barrett K.E., Barman S.M., Brooks H.L., Ganong W.F. (2019). Ganong’s review of medical physiology. McGraw-Hill Education, London.
  4. Bertram C., Hanson M. (2002). Prenatal programming of postnatal endocrine responses by glucocorticoids. Reproduction, 124: 459–467.10.1530/rep.0.1240459
  5. Bik W. (2007). Vasoactive intestinal peptide-immunomodulatory factor and its role in respiratory diseases (in Polish). Post. Nauk Med., 10: 408–413.
  6. Blicharski T., Tomaszewska E., Dobrowolski P., Hułas-Stasiak M., Muszyński S. (2017). A metabolite of leucine (β-hydroxy-β-methylbutyrate) given to sows during pregnancy alters bone development of their newborn offspring by hormonal modulation. PLOS One, 12: e0179693.10.1371/journal.pone.0179693
  7. Cheng W.-Y., Chen L.-K., Peng L.-N., Wang M. (2020). Oral nutritional supplementation with HMB not only improved muscle mass, but also intramuscular fat deposition in older adults: A 12-week randomized controlled trial. Clin. Nut. ESPEN, 40: 466.10.1016/j.clnesp.2020.09.182
  8. Cieślak D., Nieradko-Iwanicka B. (2018). β-Hydroxy β-methylbutyrate (HMB) supplementation during pregnancy and perinatal period in animals studies and possible application in humans. J. Educ. Health Sport, 8: 11–18.
  9. Delgado M., Pozo D., Ganea D. (2004). The significance of vasoactive intestinal peptide in immunomodulation. Pharmacol. Rev., 56: 249–290.10.1124/pr.56.2.7
  10. Dibner J.J., Buttin P. (2002). Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. J. Appl. Poultry Res., 11: 453–463.10.1093/japr/11.4.453
  11. Dobrowolski P., Muszyński S., Donaldson J., Jakubczak A., Żmuda A., Taszkun I., Rycerz K., Mielnik-Błaszczak M., Kuc D., Tomaszewska E. (2021). The effects of prenatal supplementation with β-hydroxy-β-methylbutyrate and/or alpha-ketoglutaric acid on the development and maturation of mink intestines are dependent on the number of pregnancies and the sex of the offspring. Animals, 11: 1468.10.3390/ani11051468
  12. Duan Y., Li F., Song B., Zheng C., Zhong Y., Xu K., Kong X., Yin Y., Wang W., Shu G. (2019). β-hydroxy-β-methyl butyrate, but not α-ketoisocaproate and excess leucine, stimulates skeletal muscle protein metabolism in growing pigs fed low-protein diets. J. Funct. Foods, 52: 34–42.10.1016/j.jff.2018.10.029
  13. Duan Y., Song B., Zheng C., Zhong Y., Guo Q., Zheng J., Yin Y., Li J., Li F. (2021). Dietary beta-hydroxy beta-methyl butyrate supplementation alleviates liver injury in lipopolysaccharide-challenged piglets. Oxid. Med. Cell. Longev., 2021: 1–9.10.1155/2021/5546843
  14. El Karim I.A., Linden G.J., Orr D.F., Lundy F.T. (2008). Antimicrobial activity of neuropeptides against a range of micro-organisms from skin, oral, respiratory and gastrointestinal tract sites. J. Neuroimmunol., 2000: 11–16.10.1016/j.jneuroim.2008.05.014
  15. Fahrenkrug J. (1993). Transmitter role of vasoactive intestinal peptide. Pharmacol. Toxicol., 72: 354–363.10.1111/j.1600-0773.1993.tb01344.x
  16. Florian V., Caroline F., Francis C., Camille S., Fabielle A. (2013). Leptin modulates enteric neurotransmission in the rat proximal colon: An in vitro study. Regul. Pept., 185: 73–78.10.1016/j.regpep.2013.06.010
  17. Flummer C., Theil P.K. (2012). Effect of β-hydroxy β-methyl butyrate supplementation of sows in late gestation and lactation on sow production of colostrum and milk and piglet performance. J. Anim. Sci., 90 (suppl 4): 372–374.10.2527/jas.53971
  18. Francis D.H. (1999). Colibacillosis in pigs and its diagnosis. Swine Health Prod., 7: 241–244.
  19. Friedman J. (2014). 20 years of leptin: leptin at 20: an overview. J. Endocrinol., 223: T1–T8.10.1530/JOE-14-0405
  20. Fung T.C., Olson C.A., Hsiao E.Y. (2017). Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci., 20: 145–155.10.1038/nn.4476
  21. Gonzalez-Rey E., Delgado M. (2005). Role of vasoactive intestinal peptide in inflammation and autoimmunity. Curr. Opin. Investig. Drugs, 6: 1116–1123.
  22. Grela E.R., Skomiał J. (2015). Nutritional recommendations and nutritional value of feed for pigs, 2nd ed. Institute of Physiology and Animal Nutrition of Polish Academy of Science, Jabłonna, Poland, pp. 1–95.
  23. Groschwitz K.R., Hogan S.P. (2009). Intestinal barrier function: Molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol., 124: 3–20.10.1016/j.jaci.2009.05.038
  24. Hales C.N., Barker D.J., Clark P.M., Cox L.J., Fall C., Osmond C., Winter P.D. (1991). Fetal and infant growth and impaired glucose tolerance at age 64. Br. Med. J., 303: 1019–1022.10.1136/bmj.303.6809.1019
  25. Hao Y., Jackson J.R., Wang Y., Edens N., Pereira S.L., Alway S.E. (2011). β-Hydroxy-β-methylbutyrate reduces myonuclear apoptosis during recovery from hind limb suspension-induced muscle fiber atrophy in aged rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 301: R701–R715.10.1152/ajpregu.00840.2010
  26. Hollander D., Kaunitz J.D. (2019). The “Leaky Gut”: Tight junctions but loose associations? Digest. Dis. Sci., 65: 1277–1287.10.1007/s10620-019-05777-2
  27. Holst J.J., Fahrenkrug J., Knuhtsen S., Jensen S.L., Poulsen S.S., Vagn Nielsen O. (1984). Vasoactive intestinal polypeptide (VIP) in the pig pancreas: role of VIPergic nerves in control of fluid and bicarbonate secretion. Regul. Pept., 8: 245–259.10.1016/0167-0115(84)90066-1
  28. Konturek S. (1985). Physiology of the gastrointestinal tract, 2nd ed. PZWL, Warsaw, Poland, 515 pp.
  29. Lis I., Bogdański P., Karolkiewicz J. (2014). The effect of β-hydroxy-β-methylbutyrate (HMB) on muscle protein metabolism. Farm. Współ., 7: 32–40.
  30. Liu Y. (2015). Fatty acids, inflammation and intestinal health in pigs. J. Anim. Sci. Biotechnol., 6: 41.10.1186/s40104-015-0040-1
  31. Luppi A. (2017). Swine enteric colibacillosis: diagnosis, therapy and antimicrobial resistance. Porc. Health Manag., 3: 16.10.1186/s40813-017-0063-4
  32. Matthews S.G. (2001). Antenatal glucocorticoids and the developing brain: mechanisms of action. Semin. Neonatol., 6: 309–317.10.1053/siny.2001.0066
  33. Milart P., Paluszkiewicz P., Dobrowolski P., Tomaszewska E., Smolinska K., Debinska I., Gawel K., Walczak K., Bednarski J., Turska M., Raban M., Kocki T., Turski W.A. (2019). Kynurenic acid as the neglected ingredient of commercial baby formulas. Sci. Rep., 9: 6108.10.1038/s41598-019-42646-4
  34. Mou Q., Yang H.-S., Yin Y.-L., Huang P.-F. (2019). Amino acids influencing intestinal development and health of the piglets. Animals, 9: 302.10.3390/ani9060302
  35. Muszyński S., Dobrowolski P., Kasperek K., Knaga S., Kwiecień M., Donaldson J., Kutyła M., Kapica M., Tomaszewska E. (2020). Effects of yeast (Saccharomyces cerevisiae) probiotics supplementation on bone quality characteristics in young Japanese Quail (Coturnix japonica): the role of sex on the action of the gut-bone axis. Animals, 10: 440.10.3390/ani10030440
  36. Nissen S.L., Abumrad N.N. (1997). Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). J. Nutr. Biochem., 8: 300–311.10.1016/S0955-2863(97)00048-X
  37. Nissen S., Faidley T.D., Zimmerman D.R., Izard R., Fisher C.T. (1994). Colostral milk fat percentage and pig performance are enhanced by feeding the leucine metabolite β-hydroxy-β-methyl butyrate to sows. J. Anim. Sci., 72: 2331–2337.10.2527/1994.7292331x
  38. Nissen S., Sharp R.L., Panton L., Vukovich M., Trappe S., Fuller J.C. (2000). β-hydroxy-β-methylbutyrate (HMB) supplementation in humans is safe and may decrease cardiovascular risk factors. J. Nutr., 130: 1937–1945.10.1093/jn/130.8.1937
  39. Novotný J., Reichel P., Kovačocyová K., Cigánková V., Almášiová V., Šipoš D. (2016). Haemorrhagic bowel syndrome in fattening pigs. Acta Vet., 66: 138–146.10.1515/acve-2016-0012
  40. Ostaszewski P., Kozłowska E., Siwicki A., Krzyżanowski J., Fuller Jr.J.C., Nissen S. (1998). The immunomodulating activity of dietary ß-hydroxy-ß-methylbutyrate (HMB) in weanling pigs. J. Anim. Sci., 76 (Suppl.1): 136.
  41. Park H.K., Ahima R.S. (2014). Leptin signaling. F1000Prime Rep., 6: 73.10.12703/P6-73
  42. Partanen K., Piva A., Bach Knudsen K.E., Lindberg J.E. (2001).
  43. Organic acids – their efficacy and modes of action in pigs. In: Gut environment of pigs. Nottingham University Press, UK, pp. 201–217.
  44. Pascale A., Marchesi N., Marelli C., Coppola A., Luzi L., Govoni S., Giustina A., Gazzaruso C. (2018). Microbiota and metabolic diseases. Endocrine, 61: 357–371.10.1007/s12020-018-1605-5
  45. Pearson P.Y., O’Connor D.M., Schwartz M.Z. (2001). Novel effect of leptin on small intestine adaptation. J. Surf. Res., 97: 192–195.10.1006/jsre.2001.6153
  46. Puzio I., Muszyński S., Dobrowolski P., Kapica M., Pawłowska-Olszewska M., Donaldson J., Tomaszewska E. (2021). Alterations in small intestine and liver morphology, immunolocalization of leptin, ghrelin and nesfatin-1 as well as immunoexpression of tight junction proteins in intestinal mucosa after gastrectomy in rat model. J. Clin. Med., 10: 272.10.3390/jcm10020272
  47. Rudyk H., Tomaszewska E., Arciszewski M.B., Muszyński S., Tomczyk-Warunek A., Dobrowolski P., Donaldson J., Brezvyn O., Kotsyumbas I. (2020). Histomorphometrical changes in intestine structure and innervation following experimental fumonisins intoxication in male Wistar rats. Pol. J. Vet. Sci., 23: 77–88.10.24425/pjvs.2020.132751
  48. Said S.I. (1991). Vasoactive intestinal polypeptide biologic role in health and disease. Trends Endocrinol. Metab., 2: 107–112.10.1016/S1043-2760(05)80006-2
  49. Schneider C.A., Rasband W.S., Eliceiri K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 9: 671–675.10.1038/nmeth.2089
  50. So K., Ng P. (2005). Treatment and prevention of neonatal osteopenia. Curr. Paediatr., 15: 106–113.10.1016/j.cupe.2004.12.011
  51. Suvarna S.K., Layton C., Bancroft J.D. (2013). Bancroft’s theory and practice of histological techniques, 7th ed. Churchill Livingstone, New York, USA.
  52. Świetlicka I., Muszyński S., Tomaszewska E., Dobrowolski P., Kwaśniewska A., Świetlicki M., Skic A., Gołacki K. (2016). Prenatally administered HMB modifies the enamel surface roughness in spiny mice offspring: An atomic force microscopy study. Arch. Oral Biol., 70: 24–31.10.1016/j.archoralbio.2016.06.001
  53. Tatara M.R., Śliwa E., Krupski W. (2007). Prenatal programming of skeletal development in the offspring: Effects of maternal treatment with β-hydroxy-β-methylbutyrate (HMB) on femur properties in pigs at slaughter age. Bone, 40: 1615–1622.10.1016/j.bone.2007.02.018
  54. Tomaszewska E., Dobrowolski P., Puzio I. (2012). Postnatal administration of 2-oxoglutaric acid improves the intestinal barrier affected by the prenatal action of dexamethasone in pigs. Nutrition, 28: 190–196.10.1016/j.nut.2011.05.010
  55. Tomaszewska E., Dobrowolski P., Puzio I., Prost Ł., Kurlak P., Sawczuk P., Badzian B., Stasiak M., Kostro K. (2014). Acrylamideinduced prenatal programming intestine structure in guinea pig. J. Physiol. Pharmacol., 65: 107–115.
  56. Tomaszewska E., Dobrowolski P., Świetlicka I., Muszyński S., Kostro K., Jakubczak A., Taszkun I., Żmuda A., Rycerz K., Blicharski T., Jaworska-Adamu J. (2017). Effects of maternal treatment with β-hydroxy-β-metylbutyrate and 2-oxoglutaric acid on femur development in offspring of minks of the standard dark brown type. J. Anim. Physiol. Anim. Nutr., 102: e299–e308.10.1111/jpn.12742
  57. Tomaszewska E., Muszyński S., Dobrowolski P., Kwiecień M., Klebaniuk R., Szymańczyk S., Tomczyk A., Kowalik S., Milczarek A., Świetlicka I. (2018). The influence of dietary replacement of soybean meal with high-tannin faba beans on gut-bone axis and metabolic response in broiler chickens. Ann. Anim. Sci., 18: 801–824.10.2478/aoas-2018-0019
  58. Tomaszewska E., Muszyński S., Dobrowolski P., Wiącek D., Tomczyk-Warunek A., Świetlicka I., Pierzynowski S.G. (2019). Maternal HMB treatment affects bone and hyaline cartilage development in their weaned piglets via the leptin/osteoprotegerin system. J. Anim. Physiol. Anim. Nutr., 103: 626–643.10.1111/jpn.13060
  59. Tomaszewska E., Dobrowolski P., Puzio I., Donaldson J., Muszyński S. (2020). Acrylamide-induced prenatal programming of bone structure in mammal model. Ann. Anim. Sci., 20: 1257–1287.10.2478/aoas-2020-0044
  60. Tomaszewska E., Burmańczuk N., Dobrowolski P., Świątkiewicz M., Donaldson J., Burmańczuk A., Mielnik-Błaszczak M., Kuc D., Milewski S., Muszyński S. (2021). The protective role of alpha-ketoglutaric acid on the growth and bone development of experimentally induced perinatal growth-retarded piglets. Animals, 11: 137.10.3390/ani11010137
  61. Tomczyk-Warunek A., Blicharski T., Jarecki J., Dobrowolski P., Muszyński S., Tomaszewska E., Rovati L.C. (2021). The effect of maternal HMB supplementation on bone mechanical and geometrical properties, as well as histomorphometry and immunolocalization of VEGF, TIMP2, MMP13, BMP2 in the bone and cartilage tissue of the humerus of their newborn piglets. PLOS One, 16: e0240642.10.1371/journal.pone.0240642
  62. Vu J.P., Larauche M., Flores M., Luong L., Norris J., Oh S., Liang L.-J., Waschek J., Pisegna J.R., Germano P.M. (2015). Regulation of appetite, body composition, and metabolic hormones by vasoactive intestinal polypeptide (VIP). J. Mol. Neurosci., 56: 377–387.10.1007/s12031-015-0556-z
  63. Wan H., Zhu J., Wu C., Zhou P., Shen Y., Lin Y., Xu S., Che L., Feng B., Li J., Fang Z., Wu D. (2017). Transfer of β-hydroxy-β-methylbutyrate from sows to their offspring and its impact on muscle fiber type transformation and performance in pigs. J. Anim. Sci. Biotechnol., 8: 2.10.1186/s40104-016-0132-6
  64. Winzell M.S., Ahrén B. (2007). Role of VIP and PACAP in islet function. Peptides, 28: 1805–1813.10.1016/j.peptides.2007.04.024
  65. Xiong X., Tan B., Song M., Ji P., Kim K., Yin Y., Liu Y. (2019). Nutritional intervention for the intestinal development and health of weaned pigs. Front. Vet. Sci., 6: 46.10.3389/fvets.2019.00046
  66. Yavas C., Yavas G., Acar H., Toy H., Yuce D., Akyurek S., Ata O. (2012). Amelioration of radiation-induced acute inflammation and mucosal atrophy by beta-hydroxy-beta-methylbutyrate, l-glutamıne, and l-argınıne: results of an experimental study. Support. Care Cancer, 21: 883–888.10.1007/s00520-012-1601-x
  67. Zheng C., Song B., Duan Y., Zhong Y., Yan Z., Zhang S., Li F. (2020). Dietary β-hydroxy-β-methylbutyrate improves intestinal function in weaned piglets after lipopolysaccharide challenge. Nutrition, 78: 110839.10.1016/j.nut.2020.110839
DOI: https://doi.org/10.2478/aoas-2021-0079 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 87 - 96
Submitted on: Aug 30, 2021
Accepted on: Sep 29, 2021
Published on: Jan 27, 2023
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Ewa Tomaszewska, Piotr Dobrowolski, Łukasz Prost, Deepesh K.P. Chand, Janine Donaldson, Dagmara Winiarczyk, Łukasz Jarosz, Artur Ciszewski, Anna Czech, Siemowit Muszyński, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.