Ali A.A., Bilodeau J.F., Sirard M.A. (2003). Antioxidant requirements for bovine oocytes varies during in vitro maturation, fertilization and development. Theriogenology, 59: 939–949.
Ali I., Liu H.X., Zhong-Shu L., Dong-Xue M., Xu L., Shah S.Z.A., Ullah O., Nan-Zhu F. (2018). Reduced glutathione alleviates tunicamycin-induced endoplasmic reticulum stress in mouse preimplantation embryos. J. Reprod. Dev., 64: 15–24.
Alvarez G., Morado S., Soto M., Dalvit G., Cetica P. (2015). The control of reactive oxygen species influences porcine oocyte in vitro maturation. Reprod. Domest. Anim., 50: 200–205.
Blondin P., Coenen K., Sirard M.A. (1997). The impact of reactive oxygen species on bovine sperm fertilizing ability and oocyte maturation. J. Androl., 18: 454–460.
Buck T., Hack C.T., Berg D., Berg U., Kunz L., Mayerhofer A. (2019). The NADPH oxidase 4 is a major source of hydrogen peroxide in human granulosa-lutein and granulosa tumor cells. Sci. Rep., 9: 1–11.
Carbone M.C., Tatone C., Delle Monache S., Marci R., Caserta D., Colonna R., Amicarelli F. (2003). Antioxidant enzymatic defences in human follicular fluid: Characterization and age-dependent changes. Mol. Hum. Reprod., 9: 639–643.
Cetica P.D., Dalvit G.C., Beconi M.T. (1999). Study of evaluation criteria used for in vitro bovine oocyte selection and maturation. Biocell, 23: 125–133.
Christou-Kent M., Dhellemmes M., Lambert E., Ray P.F., Arnoult C. (2020). Diversity of RNA-binding proteins modulating post-transcriptional regulation of protein expression in the maturing mammalian oocyte. Cells, 9: 662.
Cui M.S., Wang X.L., Tang D.W., Zhang J., Liu Y., Zeng S.M. (2011). Acetylation of H4K12 in porcine oocytes during in vitro aging: Potential role of ooplasmic reactive oxygen species. Theriogenology, 75: 638–646.
Egea J., Fabregat I., Frapart Y.M., Ghezzi P., Görlach A., Kietzmann T., Kubaichuk K., Knaus U.G., et al. (2017). European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol., 13: 94–162.
El-Shahat K.H., Kandil M. (2012). Antioxidant capacity of follicular fluid in relation to follicular size and stage of estrous cycle in buffaloes. Theriogenology, 77: 1513–1518.
García-Martínez T., Vendrell-Flotats M., Martínez-Rodero I., Ordóñez-León E.A., Álvarez-Rodríguez M., López-Béjar M., Yeste M., Mogas T. (2020). Glutathione ethyl ester protects in vitro-maturing bovine oocytes against oxidative stress induced by subsequent vitrification/warming. Int. J. Mol. Sci., 21: 1–26.
Herrick J.R., Brad A.M., Krisher R.L. (2006). Chemical manipulation of glucose metabolism in porcine oocytes: Effects on nuclear and cytoplasmic maturation in vitro. Reproduction, 131: 289–298.
Kala M., Shaikh M.V., Nivsarkar M. (2017). Equilibrium between anti-oxidants and reactive oxygen species: a requisite for oocyte development and maturation. Reprod. Med. Biol., 16: 28–35.
Lamirande De E., Gagnon C. (1993). A positive role for the superoxide anion in triggering hyperactivation and capacitation of human spermatozoa. Int. J. Androl., 16: 21–25.
Leyens G., Knoops B., Donnay I. (2004 a). Expression of peroxiredoxins in bovine oocytes and embryos produced in vitro. Mol. Reprod. Dev., 69: 243–251.10.1002/mrd.20145
Leyens G., Verhaeghe B., Landtmeters M., Marchandise J., Knoops B., Donnay I. (2004 b). Peroxiredoxin 6 is upregulated in bovine oocytes and cumulus cells during in vitro maturation: role of intercellular communication. Biol. Reprod., 71: 1646–1651.10.1095/biolreprod.104.030155
Li W., Young J.F., Sun J. (2018). NADPH oxidase-generated reactive oxygen species in mature follicles are essential for Drosophila ovulation. Proc. Natl. Acad. Sci., 115: 7765–7770.
Lopes A., Lane M., Thompson J.G. (2010). Oxygen consumption and ROS production are increased at the time of fertilization and cell cleavage in bovine zygotes. Human Reprod., 25: 2762–2773.
Von Mengden L., Klamt F., Smitz J. (2020). Redox biology of human cumulus cells: basic concepts, impact on oocyte quality, and potential clinical use. Antioxid. Redox Sign., 32: 522–535.
Morado S.A., Cetica P.D., Beconi M.T., Dalvit G. C. (2009). Reactive oxygen species in bovine oocyte maturation in vitro. Reprod. Fert. Develop., 21: 608–614.
Morado S., Cetica P., Beconi M., Thompson J.G., Dalvit G. (2013). Reactive oxygen species production and redox state in parthenogenetic and sperm-mediated bovine oocyte activation. Reproduction, 145: 471–478.
Mouatassim El S., Guérin P., Ménézo Y. (1999). Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Mol. Hum. Reprod., 5: 720–725.
Mourot M., Dufort I., Gravel C., Algriany O., Dieleman S., Sirard M.-A. (2006). The influence of follicle size, FSH-enriched maturation medium, and early cleavage on bovine oocyte maternal mRNA levels. Mol. Reprod. Dev., 73: 1367–1379.
Nishihara T., Matsumoto K., Hosoi Y., Morimoto Y. (2018). Evaluation of antioxidant status and oxidative stress markers in follicular fluid for human in vitro fertilization outcome. Reprod. Med. Biol., 17: 481–486.
O’Flaherty C., Breininger E., Beorlegui N., Beconi M.T. (2005). Acrosome reaction in bovine spermatozoa: Role of reactive oxygen species and lactate dehydrogenase C4. Biochim. Biophys. Acta - Gen. Subj., 1726: 96–101.
Pandey A.N., Chaube S. K. (2014). A moderate increase of hydrogen peroxide level is beneficial for spontaneous resumption of meiosis from diplotene arrest in rat oocytes cultured in vitro. Biores. Open Access, 3: 183–191.
Song B.S., Jeong P.S., Lee J.H., Lee M.H., Yang H.J., Choi S.A., Lee H.Y., Yoon S.B., Park Y.H., et al., (2018). The effects of kinase modulation on in vitro maturation according to different cumulus oocyte complex morphologies. PLoS One, 13: 1–20.
Takahashi Y., First N.L. (1992) In vitro development of bovine one-cell embryos: influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology, 37: 963–978.10.1016/0093-691X(92)90096-A
Vandaele L., Thys M., Bijttebier J., Van Langendonckt A., Donnay I., Maes D., Meyer E., Van Soom A. (2010). Short-term exposure to hydrogen peroxide during oocyte maturation improves bovine embryo development. Reproduction, 139: 505–511.
Velez-Pardo C., Tarazona Morales A., Jimenez Del Rio M., Olivera-Angel M. (2007). Endogenously generated hydrogen peroxide induces apoptosis via mitochondrial damage independent of NF-κB and p53 activation in bovine embryos. Theriogenology, 67: 1285–1296.