Have a personal or library account? Click to login

Prenatal programming of the small intestine in piglets: the effect of supplementation with 3-hydroxy-3-methylbutyric acid (HMB) in pregnant sows on the structure of jejunum of their offspring

Open Access
|May 2022

References

  1. Arciszewski M.B., Nowakowski Z., Wasowicz K., Całka J. (2009). Expression of vasoactive intestinal polypeptide, substance P and neuropeptide Y in jejunal enteric nerves is altered in rabbits suffering from long term Trichinella spiralis infection: an immunohistochemical study. Vet. Med., 54: 589597.10.17221/66/2009-VETMED
  2. Bertram C.E., Hanson M.A. (2002). Prenatal programming of postnatal endocrine responses by glucocorticoids. Reproduction, 124: 459467.10.1530/rep.0.1240459
  3. Bik W. (2007). Vasoactive intestinal peptide-immunomodulatory factor and its role in respiratory diseases (in Polish). Post. Nauk Med., 10: 408413.
  4. Blicharski T., Tomaszewska E., Dobrowolski P., Hułas-Stasiak M., Muszyński S. (2017). A metabolite of leucine (β-hydroxy-β-methylbutyrate) given to sows during pregnancy alters bone development of their newborn offspring by hormonal modulation. PLoS One, 12: e0179693.10.1371/journal.pone.0179693
  5. Czech A., Grela R.E., Kiesz M., Kłys S. (2020). Biochemical and haematological blood parameters of sows and piglets fed a diet with a dried fermented rapeseed meal. Ann. Anim. Sci., 20: 535–550.10.2478/aoas-2019-0079
  6. Delgado M., Pozo D., Ganea D. (2004). The significance of vasoactive intestinal peptide in immunomodulation. Pharmacol. Rev., 56: 249290.10.1124/pr.56.2.7
  7. Dobrowolski P., Muszyński S., Donaldson J., Jakubczak A., Żmuda A., Taszkun I., Rycerz K., Mielnik-Błaszczak M., Kuc D., Tomaszewska E. (2021). The effects of prenatal supplementation with β-hydroxy-β-methylbutyrate and/or alpha-ketoglutaric acid on the development and maturation of mink intestines are dependent on the number of pregnancies and the sex of the offspring. Animals, 11: 1468.10.3390/ani11051468
  8. Duan Y., Li F., Song B., Zheng C., Zhong Y., Xu K., Kong X., Yin Y., Wang W., Shu G. (2019). β-hydroxy-β-methyl butyrate, but not α-ketoisocaproate and excess leucine, stimulates skeletal muscle protein metabolism in growing pigs fed low protein diets. J. Funct. Foods, 52: 34–42.10.1016/j.jff.2018.10.029
  9. El Karim I.A., Linden G.J., Orr D.F., Lundy F.T. (2008). Antimicrobial activity of neuropeptides against a range of micro-organisms from skin, oral, respiratory and gastrointestinal tract sites. J. Neuroimmunol., 200: 1116.10.1016/j.jneuroim.2008.05.014
  10. Flummer C., Theil P.K. (2012). Effect of β-hydroxy β-methyl butyrate supplementation of sows in late gestation and lactation on sow production of colostrum and milk and piglet performance. J. Anim. Sci., 90: 372–374.10.2527/jas.53971
  11. Francis D.H. (1999). Colibacillosis in pigs and its diagnosis. Swine Health Prod., 7: 241244.
  12. Friedman J. (2014). 20 years of leptin: leptin at 20: an overview. J. Endocrinol., 223: T1T8.10.1530/JOE-14-0405
  13. Gonzalez-Rey E., Delgado M. (2005). Role of vasoactive intestinal peptide in inflammation and autoimmunity. Curr. Opin. Investig. Drugs., 6: 11161123.
  14. Grela E.R., Skomiał J. (2015). Nutritional recommendations and nutritional value of feed for pigs, 2nd ed. Institute of Physiology and Animal Nutrition of Polish Academy of Science, Jabłonna, Poland, pp. 195.
  15. Groschwitz K.R., Hogan S.P. (2009). Intestinal barrier function: molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol., 124: 320.10.1016/j.jaci.2009.05.038
  16. Hales C.N., Barker D.J., Clark P.M., Cox L.J., Fall C., Osmond C., Winter P.D. (1991). Fetal and infant growth and impaired glucose tolerance at age 64. Br. Med. J., 303: 10191022.10.1136/bmj.303.6809.1019
  17. Hao Y., Jackson J.R., Wang Y., Edens N., Pereira S.L., Alway S.E. (2011). β-Hydroxy-β-methylbutyrate reduces myonuclear apoptosis during recovery from hind limb suspension-induced muscle fiber atrophy in aged rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 301: R701R715.10.1152/ajpregu.00840.2010
  18. Hułas-Stasiak M., Jakubowicz-Gil J., Dobrowolski P., Grzesiak M., Muszyński S., Świątkiewicz M., Tomaszewska E. (2020). Regulation of folliculogenesis by growth factors in piglet ovary exposed prenatally to β-hydroxy-β-methylbutyrate (HMB). Ann. Anim. Sci., 20: 899–917.10.2478/aoas-2020-0026
  19. Lis I., Bogdański P., Karolkiewicz J. (2014). The effect of β-hydroxy-β-methylbutyrate (HMB) on muscle protein metabolism. Farm Współ., 7: 3241.
  20. Luppi A. (2017). Swine enteric colibacillosis: diagnosis, therapy and antimicrobial resistance. Porc. Health Manag., 3: 16.10.1186/s40813-017-0063-4
  21. Matthews S.G. (2001). Antenatal glucocorticoids and the development brain: mechanisms of action. Semin Neonatol., 6: 309317.10.1053/siny.2001.0066
  22. Milart P., Paluszkiewicz P., Dobrowolski P., Tomaszewska E., Smolińska K., Dębińska I., Gaweł K., Walczak K., Bednarski J., Turska M., Raban M., Kocki T., Turski W.A. (2019). Kynurenic acid as the neglected ingredient of commercial baby formulas. Sci. Rep., 9: 6108.10.1038/s41598-019-42646-4
  23. Mou Q., Yang H-S., Yin Y-L., Huang P-F. (2019). Amino acids influencing intestinal development and health of the piglets. Animals, 9: 302.10.3390/ani9060302
  24. Nissen S., Abumrad N.N. (1997). Nutritional role of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB). J. Nutr. Biochem., 8: 300311.10.1016/S0955-2863(97)00048-X
  25. Nissen S., Faidley T.D., Zimmerman D.R., Izard R., Fisher C.T. (1994). Colostral milk fat percentage and pig performance are enhanced by feeding the leucine metabolite beta-hydroxy-beta-methyl butyrate to sows. J. Anim. Sci., 72: 2331–2337.10.2527/1994.7292331x
  26. Nissen S., Sharp R.L., Panton L., Vukovich M., Trappe S., Fuller J.C. Jr. (2000). Beta-hydroxy-methylbutyrate (HMB) supplementation in humans is safe and decrease cardiovascular risk factors. J. Nutr., 130: 19371945.10.1093/jn/130.8.1937
  27. Nowak P., Zaworska-Zakrzewska A., Frankiewicz A., Kasprowicz-Potocka M. (2021). The effects and mechanisms of acids on the health of piglets and weaners – a review. Ann. Anim. Sci., 21: 433–455.10.2478/aoas-2020-0088
  28. Park H.K., Ahima R.S. (2014). Leptin signaling. F1000Prime Rep., 6: 73.10.12703/P6-73
  29. Pearson P.Y., O’Connor D.M., Schwartz M.Z. (2001). Novel effect of leptin on small intestine adaptation. J. Surg. Res., 97: 192–195.10.1006/jsre.2001.6153
  30. Rudyk H., Tomaszewska E., Arciszewski M.B., Muszyński S., Tomczyk-Warunek A., Dobrowolski P., Donaldson J., Brezvyn O., Kotsyumbas I. (2020). Histomorphometrical changes in intestine structure and innervation following experimental fumonisins intoxication in male Wistar rats. Pol. J. Vet. Sci., 23: 7788.
  31. Said S.I. (1991). Vasoactive intestinal polypeptide: biologic role in health and disease. Trends Endocrinol Metab., 2: 107–112.10.1016/S1043-2760(05)80006-2
  32. Schneider C.A., Rasband W.S., Eliceiri K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 9: 671–675.10.1038/nmeth.2089
  33. So K-W., Ng P-C. (2005). Treatment and prevention of neonatal osteopenia. Curr. Pediatr., 15: 106–113.10.1016/j.cupe.2004.12.011
  34. Suvarna S.K., Layton C., Bancroft J.D. (2013). Bancroft’s theory and practice of histological techniques, 7th ed. Churchill Livingstone, New York, NY, USA.
  35. Świetlicka I., Muszyński S., Tomaszewska E., Dobrowolski P., Kwaśniewska A., Świetlicki M., Skic A., Gołacki K. (2016). Prenatally administered HMB modifies the enamel surface roughness in spiny mice offspring: An atomic force microscopy study. Arch. Oral Biol., 70: 2431.10.1016/j.archoralbio.2016.06.001
  36. Tatara M.R., Śliwa E., Krupski W. (2007). Prenatal programming of skeletal development in the offspring: effects of maternal treatment with β-hydroxy-β-methylbutyrate (HMB) on femur properties in pigs at slaughter age. Bone, 40: 1615–1622.10.1016/j.bone.2007.02.018
  37. Tomaszewska E., Dobrowolski P., Puzio I., Prost Ł., Kurlak P., Sawczuk P., Badzian B., Hułas-Stasiak M., Kostro K. (2014). Acrylamide-induced prenatal programming intestine structure in guinea pig. J. Physiol. Pharmacol., 65: 107–115.
  38. Tomaszewska E., Dobrowolski P., Świetlicka I., Muszyński S., Kostro K., Jakubczak A., Taszkun I., Żmuda A., Rycerz, K., Blicharski T., Jaworska-Adamu J. (2018). Effects of maternal treatment with β-hydroxy-β-metylbutyrate and 2-oxoglutaric acid on femur development in offspring of minks of the standard dark brown type. J. Anim. Physiol. Anim. Nutr., 102: e299–e308.10.1111/jpn.12742
  39. Tomaszewska E., Muszyński S., Dobrowolski P., Wiącek D., Tomczyk-Warunek A., Świetlicka I., Pierzynowski G.P. (2019). Maternal HMB treatment affects bone and hyaline cartilage development in their weaned piglets via the leptin/osteoprotegerin system. J. Anim. Physiol. Anim. Nutr., 103: 626–643.10.1111/jpn.13060
  40. Tomaszewska E., Dobrowolski P., Puzio I., Donaldson J., Muszyński S. (2020). Acrylamide-induced prenatal programming of bone structure in mammal model. Ann. Anim. Sci., 20: 1257–1287.10.2478/aoas-2020-0044
  41. Tomaszewska E., Burmańczuk N., Dobrowolski P., Świątkiewicz M., Donaldson J., Burmańczuk A., Mielnik-Błaszczak M., Kuc D., Milewski S., Muszyński S. (2021). The protective role of alpha-ketoglutaric acid on the growth and bone development of experimentally induced perinatal growth-retarded piglets. Animals, 11: 137.10.3390/ani11010137
  42. Tomczyk-Warunek A., Blicharski T., Jarecki J., Dobrowolski P., Muszyński S., Tomaszewska E., Rovati L.C. (2021). The effect of maternal HMB supplementation on bone mechanical and geometrical properties, as well as histomorphometry and immunolocalization of VEGF, TIMP2, MMP13, BMP2 in the bone and cartilage tissue of the humerus of their newborn piglets. PloS One, 16: 2 e024–0642.10.1371/journal.pone.0240642
  43. Vu J.P., Larauche M., Flores M., Luong L., Norris J., Oh S., Liang L.J., Waschek J., Pisegna J.R., Germano P.M. (2015). Regulation of appetite, body composition, and metabolic hormones by vasoactive intestinal polypeptide (VIP). J. Mol. Neurosci., 56: 377–387.10.1007/s12031-015-0556-z
  44. Winzell M.S., Ahrén B. (2007). Role of VIP and PACAP in islet function. Peptides, 28: 1805–1813.10.1016/j.peptides.2007.04.024
  45. Xiong X., Tan B., Song M., Ji P., Kim K., Yin Y., Liu Y. (2019). Nutritional intervention for the intestinal development and health of weaned pigs. Front. Vet. Sci., 6: 46.10.3389/fvets.2019.00046
  46. Yavas C., Yavas G., Acar H., Toy H., Yuce D., Akyurek S., Ata O. (2013). Amelioration of radiation-induced acute inflammation and mucosal atrophy by beta-hydroxy-beta-methylbutyrate, L-glutamıne, and L-argınıne: results of an experimental study. Support Care Cancer, 21: 883–888.10.1007/s00520-012-1601-x
  47. Zheng C., Song B., Duan Y., Zhong Y., Yan Z., Zhang S., Li F. (2020). Dietary β-hydroxy-β-methylbutyrate improves intestinal function in weaned piglets after lipopolysaccharide challenge. Nutrition, 78: 110839.10.1016/j.nut.2020.110839
DOI: https://doi.org/10.2478/aoas-2021-0075 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 613 - 623
Submitted on: Aug 16, 2021
Accepted on: Sep 17, 2021
Published on: May 12, 2022
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Ewa Tomaszewska, Łukasz Prost, Piotr Dobrowolski, Deepesh K.P. Chand, Janine Donaldson, Anna Czech, Renata Klebaniuk, Julia Fabjanowska, Siemowit Muszyński, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.