References
- Arciszewski M.B., Nowakowski Z., Wasowicz K., Całka J. (2009). Expression of vasoactive intestinal polypeptide, substance P and neuropeptide Y in jejunal enteric nerves is altered in rabbits suffering from long term Trichinella spiralis infection: an immunohistochemical study. Vet. Med., 54: 589597.10.17221/66/2009-VETMED
- Bertram C.E., Hanson M.A. (2002). Prenatal programming of postnatal endocrine responses by glucocorticoids. Reproduction, 124: 459467.10.1530/rep.0.1240459
- Bik W. (2007). Vasoactive intestinal peptide-immunomodulatory factor and its role in respiratory diseases (in Polish). Post. Nauk Med., 10: 408413.
- Blicharski T., Tomaszewska E., Dobrowolski P., Hułas-Stasiak M., Muszyński S. (2017). A metabolite of leucine (β-hydroxy-β-methylbutyrate) given to sows during pregnancy alters bone development of their newborn offspring by hormonal modulation. PLoS One, 12: e0179693.10.1371/journal.pone.0179693
- Czech A., Grela R.E., Kiesz M., Kłys S. (2020). Biochemical and haematological blood parameters of sows and piglets fed a diet with a dried fermented rapeseed meal. Ann. Anim. Sci., 20: 535–550.10.2478/aoas-2019-0079
- Delgado M., Pozo D., Ganea D. (2004). The significance of vasoactive intestinal peptide in immunomodulation. Pharmacol. Rev., 56: 249290.10.1124/pr.56.2.7
- Dobrowolski P., Muszyński S., Donaldson J., Jakubczak A., Żmuda A., Taszkun I., Rycerz K., Mielnik-Błaszczak M., Kuc D., Tomaszewska E. (2021). The effects of prenatal supplementation with β-hydroxy-β-methylbutyrate and/or alpha-ketoglutaric acid on the development and maturation of mink intestines are dependent on the number of pregnancies and the sex of the offspring. Animals, 11: 1468.10.3390/ani11051468
- Duan Y., Li F., Song B., Zheng C., Zhong Y., Xu K., Kong X., Yin Y., Wang W., Shu G. (2019). β-hydroxy-β-methyl butyrate, but not α-ketoisocaproate and excess leucine, stimulates skeletal muscle protein metabolism in growing pigs fed low protein diets. J. Funct. Foods, 52: 34–42.10.1016/j.jff.2018.10.029
- El Karim I.A., Linden G.J., Orr D.F., Lundy F.T. (2008). Antimicrobial activity of neuropeptides against a range of micro-organisms from skin, oral, respiratory and gastrointestinal tract sites. J. Neuroimmunol., 200: 1116.10.1016/j.jneuroim.2008.05.014
- Flummer C., Theil P.K. (2012). Effect of β-hydroxy β-methyl butyrate supplementation of sows in late gestation and lactation on sow production of colostrum and milk and piglet performance. J. Anim. Sci., 90: 372–374.10.2527/jas.53971
- Francis D.H. (1999). Colibacillosis in pigs and its diagnosis. Swine Health Prod., 7: 241244.
- Friedman J. (2014). 20 years of leptin: leptin at 20: an overview. J. Endocrinol., 223: T1T8.10.1530/JOE-14-0405
- Gonzalez-Rey E., Delgado M. (2005). Role of vasoactive intestinal peptide in inflammation and autoimmunity. Curr. Opin. Investig. Drugs., 6: 11161123.
- Grela E.R., Skomiał J. (2015). Nutritional recommendations and nutritional value of feed for pigs, 2nd ed. Institute of Physiology and Animal Nutrition of Polish Academy of Science, Jabłonna, Poland, pp. 195.
- Groschwitz K.R., Hogan S.P. (2009). Intestinal barrier function: molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol., 124: 320.10.1016/j.jaci.2009.05.038
- Hales C.N., Barker D.J., Clark P.M., Cox L.J., Fall C., Osmond C., Winter P.D. (1991). Fetal and infant growth and impaired glucose tolerance at age 64. Br. Med. J., 303: 10191022.10.1136/bmj.303.6809.1019
- Hao Y., Jackson J.R., Wang Y., Edens N., Pereira S.L., Alway S.E. (2011). β-Hydroxy-β-methylbutyrate reduces myonuclear apoptosis during recovery from hind limb suspension-induced muscle fiber atrophy in aged rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 301: R701R715.10.1152/ajpregu.00840.2010
- Hułas-Stasiak M., Jakubowicz-Gil J., Dobrowolski P., Grzesiak M., Muszyński S., Świątkiewicz M., Tomaszewska E. (2020). Regulation of folliculogenesis by growth factors in piglet ovary exposed prenatally to β-hydroxy-β-methylbutyrate (HMB). Ann. Anim. Sci., 20: 899–917.10.2478/aoas-2020-0026
- Lis I., Bogdański P., Karolkiewicz J. (2014). The effect of β-hydroxy-β-methylbutyrate (HMB) on muscle protein metabolism. Farm Współ., 7: 3241.
- Luppi A. (2017). Swine enteric colibacillosis: diagnosis, therapy and antimicrobial resistance. Porc. Health Manag., 3: 16.10.1186/s40813-017-0063-4
- Matthews S.G. (2001). Antenatal glucocorticoids and the development brain: mechanisms of action. Semin Neonatol., 6: 309317.10.1053/siny.2001.0066
- Milart P., Paluszkiewicz P., Dobrowolski P., Tomaszewska E., Smolińska K., Dębińska I., Gaweł K., Walczak K., Bednarski J., Turska M., Raban M., Kocki T., Turski W.A. (2019). Kynurenic acid as the neglected ingredient of commercial baby formulas. Sci. Rep., 9: 6108.10.1038/s41598-019-42646-4
- Mou Q., Yang H-S., Yin Y-L., Huang P-F. (2019). Amino acids influencing intestinal development and health of the piglets. Animals, 9: 302.10.3390/ani9060302
- Nissen S., Abumrad N.N. (1997). Nutritional role of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB). J. Nutr. Biochem., 8: 300311.10.1016/S0955-2863(97)00048-X
- Nissen S., Faidley T.D., Zimmerman D.R., Izard R., Fisher C.T. (1994). Colostral milk fat percentage and pig performance are enhanced by feeding the leucine metabolite beta-hydroxy-beta-methyl butyrate to sows. J. Anim. Sci., 72: 2331–2337.10.2527/1994.7292331x
- Nissen S., Sharp R.L., Panton L., Vukovich M., Trappe S., Fuller J.C. Jr. (2000). Beta-hydroxy-methylbutyrate (HMB) supplementation in humans is safe and decrease cardiovascular risk factors. J. Nutr., 130: 19371945.10.1093/jn/130.8.1937
- Nowak P., Zaworska-Zakrzewska A., Frankiewicz A., Kasprowicz-Potocka M. (2021). The effects and mechanisms of acids on the health of piglets and weaners – a review. Ann. Anim. Sci., 21: 433–455.10.2478/aoas-2020-0088
- Park H.K., Ahima R.S. (2014). Leptin signaling. F1000Prime Rep., 6: 73.10.12703/P6-73
- Pearson P.Y., O’Connor D.M., Schwartz M.Z. (2001). Novel effect of leptin on small intestine adaptation. J. Surg. Res., 97: 192–195.10.1006/jsre.2001.6153
- Rudyk H., Tomaszewska E., Arciszewski M.B., Muszyński S., Tomczyk-Warunek A., Dobrowolski P., Donaldson J., Brezvyn O., Kotsyumbas I. (2020). Histomorphometrical changes in intestine structure and innervation following experimental fumonisins intoxication in male Wistar rats. Pol. J. Vet. Sci., 23: 7788.
- Said S.I. (1991). Vasoactive intestinal polypeptide: biologic role in health and disease. Trends Endocrinol Metab., 2: 107–112.10.1016/S1043-2760(05)80006-2
- Schneider C.A., Rasband W.S., Eliceiri K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 9: 671–675.10.1038/nmeth.2089
- So K-W., Ng P-C. (2005). Treatment and prevention of neonatal osteopenia. Curr. Pediatr., 15: 106–113.10.1016/j.cupe.2004.12.011
- Suvarna S.K., Layton C., Bancroft J.D. (2013). Bancroft’s theory and practice of histological techniques, 7th ed. Churchill Livingstone, New York, NY, USA.
- Świetlicka I., Muszyński S., Tomaszewska E., Dobrowolski P., Kwaśniewska A., Świetlicki M., Skic A., Gołacki K. (2016). Prenatally administered HMB modifies the enamel surface roughness in spiny mice offspring: An atomic force microscopy study. Arch. Oral Biol., 70: 2431.10.1016/j.archoralbio.2016.06.001
- Tatara M.R., Śliwa E., Krupski W. (2007). Prenatal programming of skeletal development in the offspring: effects of maternal treatment with β-hydroxy-β-methylbutyrate (HMB) on femur properties in pigs at slaughter age. Bone, 40: 1615–1622.10.1016/j.bone.2007.02.018
- Tomaszewska E., Dobrowolski P., Puzio I., Prost Ł., Kurlak P., Sawczuk P., Badzian B., Hułas-Stasiak M., Kostro K. (2014). Acrylamide-induced prenatal programming intestine structure in guinea pig. J. Physiol. Pharmacol., 65: 107–115.
- Tomaszewska E., Dobrowolski P., Świetlicka I., Muszyński S., Kostro K., Jakubczak A., Taszkun I., Żmuda A., Rycerz, K., Blicharski T., Jaworska-Adamu J. (2018). Effects of maternal treatment with β-hydroxy-β-metylbutyrate and 2-oxoglutaric acid on femur development in offspring of minks of the standard dark brown type. J. Anim. Physiol. Anim. Nutr., 102: e299–e308.10.1111/jpn.12742
- Tomaszewska E., Muszyński S., Dobrowolski P., Wiącek D., Tomczyk-Warunek A., Świetlicka I., Pierzynowski G.P. (2019). Maternal HMB treatment affects bone and hyaline cartilage development in their weaned piglets via the leptin/osteoprotegerin system. J. Anim. Physiol. Anim. Nutr., 103: 626–643.10.1111/jpn.13060
- Tomaszewska E., Dobrowolski P., Puzio I., Donaldson J., Muszyński S. (2020). Acrylamide-induced prenatal programming of bone structure in mammal model. Ann. Anim. Sci., 20: 1257–1287.10.2478/aoas-2020-0044
- Tomaszewska E., Burmańczuk N., Dobrowolski P., Świątkiewicz M., Donaldson J., Burmańczuk A., Mielnik-Błaszczak M., Kuc D., Milewski S., Muszyński S. (2021). The protective role of alpha-ketoglutaric acid on the growth and bone development of experimentally induced perinatal growth-retarded piglets. Animals, 11: 137.10.3390/ani11010137
- Tomczyk-Warunek A., Blicharski T., Jarecki J., Dobrowolski P., Muszyński S., Tomaszewska E., Rovati L.C. (2021). The effect of maternal HMB supplementation on bone mechanical and geometrical properties, as well as histomorphometry and immunolocalization of VEGF, TIMP2, MMP13, BMP2 in the bone and cartilage tissue of the humerus of their newborn piglets. PloS One, 16: 2 e024–0642.10.1371/journal.pone.0240642
- Vu J.P., Larauche M., Flores M., Luong L., Norris J., Oh S., Liang L.J., Waschek J., Pisegna J.R., Germano P.M. (2015). Regulation of appetite, body composition, and metabolic hormones by vasoactive intestinal polypeptide (VIP). J. Mol. Neurosci., 56: 377–387.10.1007/s12031-015-0556-z
- Winzell M.S., Ahrén B. (2007). Role of VIP and PACAP in islet function. Peptides, 28: 1805–1813.10.1016/j.peptides.2007.04.024
- Xiong X., Tan B., Song M., Ji P., Kim K., Yin Y., Liu Y. (2019). Nutritional intervention for the intestinal development and health of weaned pigs. Front. Vet. Sci., 6: 46.10.3389/fvets.2019.00046
- Yavas C., Yavas G., Acar H., Toy H., Yuce D., Akyurek S., Ata O. (2013). Amelioration of radiation-induced acute inflammation and mucosal atrophy by beta-hydroxy-beta-methylbutyrate, L-glutamıne, and L-argınıne: results of an experimental study. Support Care Cancer, 21: 883–888.10.1007/s00520-012-1601-x
- Zheng C., Song B., Duan Y., Zhong Y., Yan Z., Zhang S., Li F. (2020). Dietary β-hydroxy-β-methylbutyrate improves intestinal function in weaned piglets after lipopolysaccharide challenge. Nutrition, 78: 110839.10.1016/j.nut.2020.110839