Blümmel M., Steingaβ H., Becker K. (1997). The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. Br. J. Nutr., 77: 911–921.
Bueno I.C., Cabral Filho S.L., Gobbo S.P., Louvandini H., Vitti D.M., Abdalla A.L. (2005). Influence of inoculum source in a gas production method. Anim. Feed Sci. Technol., 30: 95–105.
Dehority A.B. (1993). Laboratory Manual for Classification and Morphology of Rumen Ciliate Protozoa. Laboratory Manual for Classification and Morphology of Rumen Ciliate Protozoa. CRC Press, Boca Raton, FL, USA.
Demirtas A., Ozturk H., Sudagidan M., Keyvan E., Yavuz O., Gulay O.Y., Musa S.A.A. (2019). Effects of commercial aldehydes from green leaf volatiles (green odour) on rumen microbial population and fermentation profile in an artificial rumen (Rusitec). Anaerobe, 55: 83–92.
Dey A., Paul S.S., Lailer P.C., Dahiya, S.S. (2021). Reducing enteric methane production from buffalo (Bubalus bubalis) by garlic oil supplementation in in vitro rumen fermentation system. SN Appl. Sci., 3: 1–7.
Djibril D., Mamadou F., Gérard V., Geuye M.D.C., Oumar S., Luc R. (2015). Physical characteristics, chemical composition and distribution of constituents of the neem seeds (Azadirachta indica A. Juss) collected in Senegal. Res. J. Chem. Sci., 606X.
El-Nile, A., Elazab M., El-Zaiat H., El-Azrak K., Elkomy A., Sallam S., Soltan Y. (2021). In vitro and in Vivo assessment of dietary supplementation of both natural or nano-zeolite in goat diets: effects on ruminal fermentation and nutrients digestibility. Animals, 11: 2215.
El-Zaiat H.M., Ré D.D., Patino H.O., Sallam S.M. (2019b). Assessment of using dried vinasse rice to replace soybean meal in lambs diets: In vitro, lambs performance and economic evaluation. Small Rumin. Res., 173: 1–8.10.1016/j.smallrumres.2019.01.003
El-Zaiat H.M., Kholif A.E., Moharam M.S., Attia M.F., Abdalla A.L., Sallam S.M. (2020). The ability of tanniniferous legumes to reduce methane production and enhance feed utilization in Barki rams: in vitro and in vivo evaluation. Small Rumin. Res., 193: 106259.
Eugène M., Massé D., Chiquette J., Benchaar C. (2008). Meta-analysis on the effects of lipid supplementation on methane production in lactating dairy cows. Can. J. Anim. Sci., 88: 331–337.
García-González R., López S., Fernández M., González J.S. (2008). Dose-response effects of Rheum officinale root and Frangula alnus bark on ruminal methane production in vitro. Anim. Feed Sci. Technol., 145: 319–334.
Gomaa A.S., Kholif A.E., Kholif A.M., Salama R., El-Alamy H.A., Olafadehan O.A. (2018). Sunflower oil and Nannochloropsis oculata microalgae as sources of unsaturated fatty acids for mitigation of methane production and enhancing diets’ nutritive value. J. Agric. Food Chem., 66: 1751–1759.
Hristov A.N., Oh J., Firkins J.L., Dijkstra J., Kebreab E., Waghorn G., Makkar H.P.S., Adesogan A.T., Yang W., Lee C., Gerber P.J., Henderson B., Tricarico J.M. (2013 a). Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci., 91: 5045–5069.10.2527/jas.2013-658324045497
Hristov A.N., Oh J., Lee C., Meinen R., Montes F., Ott T., Firkins J., Rotz A., Dell C., Adesogan A., Yang W., Tricarico J., Kebreab E., Waghorn G., Dijkstra J., Oosting S. (2013 b). Mitigation of greenhouse gas emissions in livestock production – a review of technical options for non-CO2 emissions. FAO Animal Production and Health Paper, 177: 231.
Konitzer K., Voigt S. (1963). Direct determination of ammonium in blood and tissue extracts by means of the phenol by chlorite reaction. Clin. Chim. Acta; Int. J. Clin. Chem., 8: 5–11.
Machmüller A., Ossowski D.A., Wanner M., Kreuzer M. (1998). Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro (Rusitec). Anim. Feed Sci. Technol., 71: 117–130.
Maia F.J., Branco A.F., Mouro G.F., Coneglian S.M., Santos G.T., Minella T.F., Guimarães K.C. (2006). Inclusão de fontes de óleo na dieta de cabras em lactação: produção, composição e perfil dos ácidos graxos do leite. R. Bras. Zootec., 35: 1504–1513.
Mao H.L., Wang J.K., Zhou Y.Y., Liu J.X. (2010). Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Livest. Sci., 129: 56–62.
Mbiriri D.T., Cho S., Mamvura C.I., Choi N.J. (2015). Assessment of rumen microbial adaptation to garlic oil, carvacrol and thymol using the consecutive batch culture system. J. Vet. Sci. Anim. Husb., 4: 1–7.
Morrison W.R., Smith L.M. (1964). Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res., 5: 600–608.
Morsy A.S., Soltan Y.A., El-Zaiat H.M., Alencar S.M., Abdalla A.L. (2021). Bee propolis extract as a phytogenic feed additive to enhance diet digestibility, rumen microbial biosynthesis, mitigating methane formation and health status of late pregnant ewes. Anim. Feed Sci. Technol., 114834. 10.1016/j.anifeedsci.2021.114834
Mould F.L., Kliem K.E., Morgan R. (2005 a). Alternative methodologies-stretching the in vitro box. Anim. Feed Sci. Technol., 123: 501–515.10.1016/j.anifeedsci.2005.04.023
Mould F.L., Kliem K.E., Morgan R., Mauricio R.M. (2005 b). In vitro microbial inoculum: A review of its function and properties. Anim. Feed Sci. Technol., 123: 31–50.10.1016/j.anifeedsci.2005.04.028
Nur Atikah I.N., Alimon A.R., Yaakub H., Abdullah N., Jahromi M.F., Ivan M., Samsudin A.A. (2018). Profiling of rumen fermentation, microbial population and digestibility in goats fed with dietary oils containing different fatty acids. BMC Vet. Res., 14: 1–9.
Patra A.K. (2013). The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: A meta-analysis. Livest. Sci., 155: 244–254.
Patra A.K., Yu K. (2015). Effects of adaptation of in vitro rumen culture to garlic oil, nitrate, and saponin and their combinations on methanogenesis, fermentation, and abundances and diversity of microbial populations. Front. Microbiol., 119: 127–138.
Patra A.K., Kamra D.N., Agarwal N. (2006). Effect of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Anim. Feed Sci. Technol., 128: 276–291.
Patra A.K, Park T., Kim M., Yu Z. (2017). Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol., 1: 1–8.
Piluzza G., Sulas L., Bullitta S. (2014). Tannins in forage plants and their role in animal husbandry and environmental sustainability: a review. Grass Forage Sci., 69: 32–48.
Roy A., Mandal G.P., Patra A.K. (2017). Effects of different vegetable oils on rumen fermentation and conjugated linoleic acid concentration in vitro. Vet. World, 10: 11.
Van Soest P.J., Robertson J.B., Lewis B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583–3597.
Wu D., Xu L., Tang S., Guan L., He Z., Guan Y., Tan Z., Han X., Zhou C., Kang J., Wang M. (2016). Influence of oleic acid on rumen fermentation and fatty acid formation in vitro. PLoS One, 11(6), p.e0156835.