Have a personal or library account? Click to login
The First Insight Into Full-Fat Superworm (Zophobas morio) Meal in Guppy (Poecilia reticulata) Diets: A Study on Multiple-Choice Feeding Preferences and Growth Performance Cover

The First Insight Into Full-Fat Superworm (Zophobas morio) Meal in Guppy (Poecilia reticulata) Diets: A Study on Multiple-Choice Feeding Preferences and Growth Performance

Open Access
|Feb 2022

References

  1. Adil S., Şişman T., İncekara Ü. (2014). An investigation on the growth and reproductive performance of Poecilia reticulata (Peters) (Cyprinodontiformes: Cyprinidae) fed diets with dried insects. Mun. Ent. Zool., 9: 638–644.
  2. Auer S.K. (2010). Phenotypic plasticity in adult life-history strategies compensates for a poor start in life in Trinidadian guppies (Poecilia reticulata). Am. Nat., 176: 818–829.10.1086/657061
  3. Aw J.M., Holbrook R.I., de Perera T.B., Kacelnik A. (2009). State-dependent valuation learning in fish: Banded tetras prefer stimuli associated with greater past deprivation. Behav. Process., 81: 333–336.10.1016/j.beproc.2008.09.002
  4. Barroso F.G., de Haro C., Sánchez-Muros M.J., Venegas E., Martínez-Sánchez A., Pérez-Bañón C. (2014). The potential of various insect species for use as food for fish. Aquaculture, 422: 193–201.10.1016/j.aquaculture.2013.12.024
  5. Belghit I., Liland N.S., Waagbø R., Biancarosa I., Pelusio N., Li Y., Lock E.J. (2018). Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture, 491: 72–81.10.1016/j.aquaculture.2018.03.016
  6. Cardoso A.C., Couceiro S.R.M. (2017). Insects in the diet of fish from Amazonian streams, in western Pará, Brazil. Mar. Freshw. Res., 68: 2052–2060.10.1071/MF16173
  7. Dossey A.T., Morales-Ramos J.A., Rojas M.G. (2016). Editors. Insects as sustainable food ingredients: production, processing and food applications. Academic Press.
  8. Døving K.B. (2007). The functional organization of the fish olfactory system. Prog. Neurobiol., 82: 80–86.10.1016/j.pneurobio.2007.02.007
  9. Fernando G.A.W., Jayakody S., Wijenayake W.H.K., Galappaththy G.N., Yata-wara M., Harishchandra J. (2018). A comparison of the larvivorous habits of exotic Poecilia reticulata and native Aplocheilus parvus. BMC Ecol., 18: 1–12.10.1186/s12898-018-0180-1
  10. Fontes T.V., de Oliveira K.R.B., Gomes Almeida I.L., Maria Orlando T., Ro-drigues P.B., Costa D.V.D. (2019). Digestibility of insect meals for Nile tilapia fingerlings. Animals, 9: 181.10.3390/ani9040181
  11. Gahukar R.T. (2016). Edible insects farming: efficiency and impact on family livelihood, food security, and environment compared with livestock and crops. In: Insects as sustainable food ingredients. Academic Press, pp. 85–111.10.1016/B978-0-12-802856-8.00004-1
  12. Ganassin M.J., Frota A., Muniz C.M., Baumgartner M.T., Hahn N.S. (2020). Urbanisation affects the diet and feeding selectivity of the invasive guppy Poecilia reticulata. Ecol. Freshw. Fish, 29: 252–265.10.1111/eff.12511
  13. Gasco L., Gai F., Maricchiolo G., Genovese L., Ragonese S., Bottari T., Caru-so G. (2018 a). Fishmeal alternative protein sources for aquaculture feeds. In: Feeds for the aquaculture sector. Springer, Cham, pp. 1–28.10.1007/978-3-319-77941-6_1
  14. Gasco L., Finke M., Van Huis A. (2018 b). Can diets containing insects promote animal health? J. Insects Food Feed., 4: 1–4.10.3920/JIFF2018.x001
  15. Halloran A., Roos N., Eilenberg J., Cerutti A., Bruun S. (2016). Life cycle assessment of edible insects for food protein: a review. Agron. Sustain. Dev., 36: 57.10.1007/s13593-016-0392-8
  16. Harpaz S., Slosman T., Segev R. (2005). Effect of feeding guppy fish fry (Poecilia reticulata) diets in the form of powder versus flakes. Aquac. Res., 36: 996–1000.10.1111/j.1365-2109.2005.01308.x
  17. Henry M.A., Gasco L., Chatzifotis S., Piccolo G. (2018). Does dietary insect meal affect the fish immune system? The case of mealworm, Tenebrio molitor on European sea bass, Dicentrarchus labrax. Dev. Comp. Immunol., 81: 204–209.10.1016/j.dci.2017.12.002
  18. Karthick Raja P., Aanand S., Stephen Sampathkumar J., Padmavathy P. (2019). Silkworm pupae meal as alternative source of protein in fish feed. J. Entomol. Zool., 7: 78–85.
  19. Kilarski W. (2012). Fish anatomy (in Polish). Warsaw, Poland, PWRiL, 1st ed., 189 pp. Superworm meal in guppy nutrition 383
  20. Kuttiyatveetil J.R., Mitra P., Goldin D., Nickerson M.T., Tanaka T. (2019). Recovery of residual nutrients from agri-food byproducts using a combination of solid-state fermentation and insect rearing. Int. J. Food Sci. Technol., 54: 1130–1140.10.1111/ijfs.14015
  21. Lawal M.O., Edokpayi C.A., Osibona A.O. (2012). Food and feeding habits of the guppy, Poecilia reticulata, from drainage canal systems in Lagos, Southwestern Nigeria. West Afr. J. Appl. Ecol., 20: 1–9.
  22. Lazzari M., Bettini S., Ciani F., Franceschini V. (2007). Light and transmission electron microscopy study of the peripheral olfactory organ of the guppy, Poecilia reticulata (Teleostei, Poecilidae). Microsc. Res. Tech., 70: 782–789.10.1002/jemt.20487
  23. Lemarie G., Dosdat A., Covès D., Dutto G., Gasset E., Person-Le Ruyet J. (2004). Effect of chronic ammonia exposure on growth of European seabass (Dicentrarchus labrax) juveniles. Aquaculture, 229: 479–491.10.1016/S0044-8486(03)00392-2
  24. Lock E.J., Biancarosa I., Gasco L. (2018). Insects as raw materials in compound feed for aquaculture. In: Edible insects in sustainable food systems. Springer, Cham., pp. 263–276.10.1007/978-3-319-74011-9_16
  25. Makkar H.P., Tran G., Heuzé V., Ankers P. (2014). State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol., 197: 1–33.10.1016/j.anifeedsci.2014.07.008
  26. Metcalfe N.B., Thomson B.C. (1995). Fish recognize and prefer to shoal with poor competitors. Proc. Royal Society of London. Series B: Biol. Sci., 259: 207–210.10.1098/rspb.1995.0030
  27. Mikołajczak Z., Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D. (2020). The effect of hydrolyzed insect meals in sea trout fingerling (Salmo trutta m. trutta) diets on growth performance, microbiota and biochemical blood parameters. Animals, 10: 1031.10.3390/ani10061031
  28. Mohammadrezaei D. (2020). The effect of media type on ammonia levels and growth performance of guppy (Poecilia reticulata) in recirculating systems. ISFJ, 28: 25–33.
  29. Mugnai C., Salio C., Munari C., Aimar P., Falzone M., Pastorino P., Sicuro B. (2019). Preliminary results of fishmeal substitution with insect meal (Hermetia illucens) on Platy (Xiphophorus maculatus) feeding: effect on gut health, reproductive parameters and water quality. Proc. 23rd Congress of the European Society of Veterinary and Comparative Nutrition. European Society of Veterinary and Comparative Nutrition, pp. 56.
  30. Ng W.K., Liew F.L., Ang L.P., Wong K.W. (2001). Potential of mealworm (Tenebrio molitor) as an alternative protein source in practical diets for African catfish, Clarias gariepinus. Aquac. Res., 32: 273–280.10.1046/j.1355-557x.2001.00024.x
  31. Nogales-Mérida S., Gobbi P., Józefiak D., Mazurkiewicz J., Dudek K., Raw-ski M., Kierończyk B., Józefiak A. (2019). Insect meals in fish nutrition. Rev. Aquac., 11: 1080–1103.10.1111/raq.12281
  32. Oonincx D.G., Van Itterbeeck J., Heetkamp M.J., Van Den Brand H., Van Loon J.J., Van Huis A. (2010). An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PloS one, 5 (12).10.1371/journal.pone.0014445301205221206900
  33. Oonincx D.G., Van Broekhoven S., Van Huis A., van Loon J.J. (2015). Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PloS one, 10 (12).10.1371/journal.pone.0144601468942726699129
  34. Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D. (2020). Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in Siberian sturgeon nutrition: the effects on physical properties of the feed, animal growth performance, and feed acceptance and utilization. Animals, 10: 2119.10.3390/ani10112119
  35. Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D. (2021). Black soldier fly full-fat larvae meal is more profitable than fish meal and fish oil in Siberian sturgeon farming: the effects on aquaculture sustainability, economy and fish GIT development. Animals, 11: 604.10.3390/ani11030604
  36. Sales J., Janssens G.P. (2003). Nutrient requirements of ornamental fish. Aquat. Living Resour., 16: 533–540.10.1016/j.aquliv.2003.06.001
  37. Santamaría Y.V., Corredor-Santamaría W. (2011). Nutritional requirements of freshwater ornamental fish: a review. Rev. MVZ Córdoba, 16: 2458–2469.10.21897/rmvz.283
  38. Seng C.M., Setha T., Nealon J., Socheat D., Chantha N., Nathan M.B. (2008). Community- based use of the larvivorous fish Poecilia reticulata to control the dengue vector Aedes aegypti in domestic water storage containers in rural Cambodia. J. Vector. Ecol., 33: 139–144.10.3376/1081-1710(2008)33[139:CUOTLF]2.0.CO;2
  39. Shohet A.J., Watt P.J. (2004). Female association preferences based on olfactory cues in the guppy, Poecilia reticulata. Behav. Ecol. Sociobiol., 55: 363–369.10.1007/s00265-003-0722-0
  40. Sinansari S., Fahmi M.R. (2020). Black soldier fly larvae as nutrient-rich diets for ornamental fish. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing, 493: 012027.10.1088/1755-1315/493/1/012027
  41. Sun H., Lü K., Minter E.J., Chen Y., Yang Z., Montagnes D.J. (2012). Combined effects of ammonia and microcystin on survival, growth, antioxidant responses, and lipid peroxidation of bighead carp Hypophthalmythys nobilis larvae. J. Hazard. Mater., 221: 213–219.10.1016/j.jhazmat.2012.04.036
  42. Suting P.S., Mandal S.C., Patel A.B. (2013). Effect of different dietary lipid sources on growth and reproductive performance of guppy (Poecilia reticulata). Isr. J. Aquac., 65: 1–6.
  43. Tacon A.G., Metian M. (2008). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285: 146–158.10.1016/j.aquaculture.2008.08.015
  44. Vidotto-Magnoni A.P., Carvalho E.D. (2009). Aquatic insects as the main food resource of fish the community in a Neotropical reservoir. Neotrop. Ichthyol., 7: 701–708.10.1590/S1679-62252009000400020
  45. Weththasinghe P., Hansen J.Ø., Nøkland D., Lagos L., Rawski M., Øverland M. (2021). Full-fat black soldier fly larvae (Hermetia illucens) meal and paste in extruded diets for Atlantic salmon (Salmo salar): Effect on physical pellet quality, nutrient digestibility, nutrient utilization and growth performances. Aquaculture, 530: 735785.10.1016/j.aquaculture.2020.735785
  46. Xu X., Ji H., Belghit I., Sun J. (2020). Black soldier fly larvae as a better lipid source than yellow mealworm or silkworm oils for juvenile mirror carp (Cyprinus carpio var. specularis). Aquaculture, 527: 735453.10.1016/j.aquaculture.2020.735453
  47. Yacoob S.Y., Browman H.I. (2007). Olfactory and gustatory sensitivity to some feed-related chemicals in the Atlantic halibut (Hippoglossus hippoglossus). Aquaculture, 263: 303–309.10.1016/j.aquaculture.2006.11.005
  48. Yi H.Y., Chowdhury M., Huang Y.D., Yu X.Q. (2014). Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol., 98: 5807–5822.10.1007/s00253-014-5792-6
  49. Zandona E., Auer S.K., Kilham S.S., Howard J.L., López-Sepulcre A., O’Con-nor M.P., Reznick D.N. (2011). Diet quality and prey selectivity correlate with life histories and predation regime in Trinidadian guppies. Funct. Ecol, 25: 964–973.10.1111/j.1365-2435.2011.01865.x
  50. Zarantoniello M., Randazzo B., Gioacchini G., Truzzi C., Giorgini E., Riolo P., Lucon-Xiccato T. (2020). Zebrafish (Danio rerio) physiological and behavioural responses to insect-based diets: A multidisciplinary approach., Sci. Rep., 10: 1–16.10.1038/s41598-020-67740-w
  51. Zielińska E., Karaś M., Baraniak B. (2018). Comparison of functional properties of edible insects and protein preparations thereof. Lwt, 91: 168–174.10.1016/j.lwt.2018.01.058
DOI: https://doi.org/10.2478/aoas-2021-0072 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 371 - 384
Submitted on: May 12, 2021
|
Accepted on: Aug 26, 2021
|
Published on: Feb 4, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2022 Joanna Kowalska, Mateusz Rawski, Natalia Homska, Zuzanna Mikołajczak, Bartosz Kierończyk, Sylwester Świątkiewicz, Roksana Wachowiak, Katarzyna Hetmańczyk, Jan Mazurkiewicz, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.