Have a personal or library account? Click to login

Effects of a single-phase fasting period and subsequent re-feeding on compensatory growth, digestive enzyme activities, and antioxidant capacity of sobaity (Sparidentex hasta) and yellowfin seabream (Acanthopagrus latus)

Open Access
|May 2022

References

  1. Abolfathi M., Hajimoradloo A., Ghorbani R., Zamani A. (2012). Effect of starvation and refeeding on digestive enzyme activities in juvenile roach, Rutilus rutilus caspicus. Comp. Biochem. Physiol. A, 161: 166–173.10.1016/j.cbpa.2011.10.020
  2. Aebi H. (1984). Catalase in vitro. Method. Enzymol., 105: 121–126.10.1016/S0076-6879(84)05016-3
  3. Ali M., Nicieza A., Wootton R.J. (2003). Compensatory growth in fishes: a response to growth depression. Fish Fisheries, 4: 147–190.10.1046/j.1467-2979.2003.00120.x
  4. Ashouri G., Mahboobi-Soofiani N., Hoseinifar S.H., Mozanzadeh M.T., Mani A., Khosravi A., Carnevali O. (2020). Compensatory growth, plasma hormones and metabolites in juvenile Siberian sturgeon (Acipenser baerii, Brandt 1869) subjected to fasting and re-feeding. Aquacult. Nutr., 26: 400–409.10.1111/anu.13002
  5. Baras E., Jobling M. (2002). Dynamics of intracohort cannibalism in cultured fish. Aquacult. Res., 33: 461–479.10.1046/j.1365-2109.2002.00732.x
  6. Bavcevic L., Klanjscek T., Karamarko V., Anicic I., Legovic T. (2010). Compensatory growth in gilthead sea bream (Sparus aurata) compensates weight, but not length. Aquaculture, 301: 57–63.10.1016/j.aquaculture.2010.01.009
  7. Bélanger F., Blier P.U., Dutil J.D. (2002). Digestive capacity and compensatory growth in Atlantic cod (Gadus morhua). J. Fish Biol., 26: 121–128.10.1023/A:1025461108348
  8. Bertucci J.I., Blanco A.M., Sundarrajan L., Rajeswari J.J., Velasco C., Unniappan S. (2019). Nutrient regulation of endocrine factors influencing feeding and growth in fish. Front. Endocrinol., 10: 83.10.3389/fendo.2019.00083
  9. Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.10.1016/0003-2697(76)90527-3
  10. Buege J.A., Aust S.D. (1978). Microsomal lipid peroxidation methods. Method. Enzymol., 52: 302–310.10.1016/S0076-6879(78)52032-6
  11. Cara B., Moyano F.J., Zambonino Infante J.L., Fauvel C. (2007). Trypsin and chymotrypsin as indicators of nutritional status of postweaned sea bass larvae. J. Fish Biol., 70: 1798–1808.10.1111/j.1095-8649.2007.01457.x
  12. Caruso G., Denaro M.G., Caruso R., Genovese L., Mancari F., Maricchiolo G. (2012). Short fasting and refeeding in red porgy (Pagrus pagrus, Linnaeus 1758): Response of some haematological, biochemical and non specific immune parameters. Marine Environ. Res., 81: 18–25.10.1016/j.marenvres.2012.07.003
  13. Congleton J., Wagner T. (2006). Blood-chemistry indicators of nutritional status in juvenile salmonids. J. Fish Biol., 69: 473–490.10.1111/j.1095-8649.2006.01114.x
  14. Dar S.A., Srivastava P.P., Varghese T., Gupta S., Gireesh-Babu P. (2018). Effects of starvation and refeeding on expression of ghrelin and leptin gene with variations in metabolic parameters in Labeo rohita fingerlings. Aquaculture, 484: 219–227.10.1016/j.aquaculture.2017.11.032
  15. Dar S.A., Srivastava P.P., Varghese T., Nazir M.U., Gupta S., Krishna G. (2019). Temporal changes in superoxide dismutase, catalase, and heat shock protein 70 gene expression, cortisol and antioxidant enzymes activity of Labeo rohita fingerlings subjected to starvation and refeeding. Gene, 692: 94–101.10.1016/j.gene.2018.12.058
  16. Davis K.B., Gaylord T.G. (2011). Effect of fasting on body composition and responses to stress in sunshine bass (Morone chrysops × Morone saxatilis). Comp. Biochem. Physiol. A, 158: 30–36.10.1016/j.cbpa.2010.08.019
  17. Dehghani R., Oujifard A., Mozanzadeh M.T., Morshedi V., Bagheri D. (2020). Effects of dietary taurine on growth performance, digestive enzymes activities and skin mucosal immune responses in yellowfin seabream, Acanthopagrus latus. Aquaculture, 517: 734–795.10.1016/j.aquaculture.2019.734795
  18. Erlanger B.F., Kokowsky N., Cohen W. (1961). The preparation and properties of two new chromogenic substrates of trypsin. Archiv. Biochem. Biophys., 95: 271–278.10.1016/0003-9861(61)90145-X
  19. Eroldoğan O.T., Kumlu M., Kiris G.A., Sezer B. (2006). Compensatory growth response of Sparus aurata following different starvation and refeeding protocols. Aquacult. Nutr., 12: 203–210.10.1111/j.1365-2095.2006.00402.x
  20. Eroldoğan O.T., Suzer C., Taşbozan O., Tabakoğlu S. (2008). The effects of rate-restricted feeding regimes in cycles on digestive enzymes of gilthead sea-bream, Sparus aurata. Turk. J. Fish. Aquat. Sci., 8: 49–54.
  21. Favero G.C., Gimbo R.Y., Montoya L.N.F., Carneiro D.J., Urbinati E.C. (2020). A fasting period during grow-out make juvenile pacu (Piaractus mesopotamicus) leaner but does not impair growth. Aquaculture, 524: 735242.10.1016/j.aquaculture.2020.735242
  22. Furné M., Morales A.E., Trenzado C.E., Garcĺa-Gallego M., Hidalgo M.C., Domezain A., Rus A.S. (2012). The metabolic effects of prolonged starvation and re-feeding in sturgeon and rainbow trout. J. Comp. Physiol. B, 182: 63–76.10.1007/s00360-011-0596-9
  23. Gawlicka A., Parent B., Horn M.H., Ross N., Opstad I., Torrissen O.J. (2000). Activity of digestive enzymes in yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus): indication of readiness for first feeding. Aquaculture, 184: 303–314.10.1016/S0044-8486(99)00322-1
  24. Gaylord T.G., Gatlin D.M. (2001). Dietary protein and energy modifications to maximize compensatory growth of channel catfish (Ictalurus punctatus). Aquaculture, 194: 337–348.10.1016/S0044-8486(00)00523-8
  25. Gisbert E., Fernández I., Alvaez-González C.A. (2011). Prolonged feed deprivation does not permanently compromise digestive function in migrating European glass eels Anguilla anguilla. J. Fish Biol., 78: 580–592.10.1111/j.1095-8649.2010.02879.x
  26. Gisbert E., Mozanzadeh M.T., Kotzamanis Y., Estevez A. (2016). Weaning wild flathead grey mullet (Mugil cephalus) fry with diets with different levels of fish meal substitution. Aquaculture, 462: 92–100.10.1016/j.aquaculture.2016.04.035
  27. Gisbert E., Nolasco H., Solovyev M. (2018). Towards the standardization of brush border purification and intestinal alkaline phosphatase quantification in fish with notes on other digestive enzymes. Aquaculture, 487: 102–108.10.1016/j.aquaculture.2018.01.004
  28. Harpaz S., Hakim Y., Slosman T., Barki A., Karplus I., Eroldoğan O.T. (2005). Effects of different feeding levels during day and/or night on growth and brush border enzyme activity in juvenile Lates calcarifer fish reared in freshwater recirculating tanks. Aquaculture, 248: 325–335.10.1016/j.aquaculture.2005.04.033
  29. Henry M., Gasco L., Piccolo G., Fountoulaki E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Technol., 203: 1–22.10.1016/j.anifeedsci.2015.03.001
  30. Jaroli D., Sharma B., (2005). Effect of organophosphate insecticide on the organic constituents in liver of Channa punctatuus. Asian J. Exp. Sci., 19: 121–129.
  31. Jobling M. (2010) Are compensatory growth and catch-up growth two sides of the same coin? Aquacult. Int., 18: 501–510.10.1007/s10499-009-9260-8
  32. Jobling M., Johansen S.J.S. (1999). The lipostat, hyperphagia and catch-up growth. Aquacult. Res., 30: 473–478.10.1046/j.1365-2109.1999.00358.x
  33. Krogdahl A., Bakke-McKellep A.M. (2005). Fasting and refeeding cause rapid changes in intestinal tissue mass and digestive enzyme capacities of Atlantic salmon (Salmo salar L.). Comp. Biochem. Physiol. A, 141: 450–460.10.1016/j.cbpb.2005.06.002
  34. Li Z.H., Xie S., Wang J.X., Chen D.Q. (2007). Effects of intermittent starvation on growth and some digestive enzymes in the shrimp Macrobrachium nipponense. J. Fish. China, 31: 456–462.
  35. Liu X., Xia J., Pang H., Yue G. (2017). Who eats whom, when and why? Juvenile cannibalism in fish Asian Seabass. Aquacult. Fish., 2: 1–9.10.1016/j.aaf.2016.12.001
  36. Mattila J., Koskela J., Pirhonen J. (2009). The effect of the length of repeated feed deprivation between single meals on compensatory growth of pikeperch Sander lucioperca. Aquaculture, 296: 65–70.10.1016/j.aquaculture.2009.07.024
  37. McCord J.M., Fridovich I. (1969). Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). J. Biol. Chem., 244: 6049–6055.10.1016/S0021-9258(18)63504-5
  38. McCue M.D. (2010). Starvation physiology: Reviewing the different strategies animals use to survive a common challenge. Comp. Biochem. Physiol. A, 156: 1–18.10.1016/j.cbpa.2010.01.002
  39. Mohapatra S., Chakraborty T., Reza M.A.N., Shimizu S., Matsubara T., Ohta K. (2017). Short-term starvation and realimentation helps stave off Edwardsiella tarda infection in red sea bream (Pagrus major). Comp. Biochem. Physiol. B, 206: 42–53.10.1016/j.cbpb.2017.01.009
  40. Morales A.E., Pérez-Jiménez A., Hidalgo M.C., Abellán E., Cardenete G. (2004). Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comp. Biochem. Physiol. C, 139: 153–161.10.1016/j.cca.2004.10.008
  41. Mozanzadeh M.T., Marammazi J.G., Yaghoubi M., Agh N., Pagheh E., Gisbert E. (2017 a). Macronutrient requirements of silvery black porgy (Sparidentex hasta): a comparison with other farmed sparid species. Fishes, 2: 5.10.3390/fishes2020005
  42. Mozanzadeh M.T., Marammazi J.G., Yaghoubi M., Yavari V., Agh N., Gisbert E. (2017 b). Somatic and physiological responses to cyclic fasting and re-feeding periods in sobaity sea bream (Sparidentex hasta, Valenciennes 1830). Aquacult. Nutr., 23: 181–191.10.1111/anu.12379
  43. Mozanzadeh M.T., Zabayeh Najafabadi M., Torfi M., Safari O., Oosooli R., Mehrjooyan S., Pagheh E., Hoseini S.J., Saghavi H., Monem J., Gisbert E. (2020). Compensatory growth of sobaity (Sparidentex hasta) and yellowfin seabreams (Acanthopagrus latus) relative to feeding rate during nursery phase. Aquacult. Nutr., 27: 468–476.10.1111/anu.13199
  44. Navarro I., Gutierrez J. (1995). Fasting and starvation. In: Biochemistry and molecular biology of fishes, Hochachka P.W., Mommsen T.P. (eds). Elsevier, Amsterdam, pp. 393–434.10.1016/S1873-0140(06)80020-2
  45. Noguchi T., Cantor A.H., Scott M.L. (1973). Mode of action of selenium and vitamin E in prevention of exudative diathesis in chicks. J. Nutr., 103: 1502–1511.10.1093/jn/103.10.1502
  46. Oh S.Y., Noh C.H., Cho S.H. (2007). Effect of restricted feeding regimes on compensatory growth and body composition of red sea bream, Pagrus major. J. World Aquacult. Soc., 38: 443–449.10.1111/j.1749-7345.2007.00116.x
  47. Oh S.Y., Kim M.S., Kwon J.Y., Venmathi Maran B.A. (2013). Effects of feed restriction to enhance the profitable farming of blackhead seabream (Acanthopagrus schlegelii schlegelii) in sea cages. Ocean Sci. J., 48: 263–268.10.1007/s12601-013-0024-z
  48. Park I., Hur J.W., Choi J.W. (2012). Hematological responses, survival, and respiratory exchange in the olive flounder, Paralichthys olivaceus, during starvation. Asian Aus. J. Anim. Sci., 25: 1276–1284.10.5713/ajas.2012.12128
  49. Pascual P., Pedrajas J.R., Toribio F., López-Barea J., Peinado J. (2003). Effect of food deprivation on oxidative stress biomarkers in fish (Sparus aurata). Chem. Biol. Interact., 145: 191–199.10.1016/S0009-2797(03)00002-4
  50. Peres H., Santos S., Oliva-Teles A. (2011). Lack of compensatory growth response in gilthead seabream (Sparus aurata) juveniles following starvation and subsequent re-feeding. Aquaculture, 318: 384–388.10.1016/j.aquaculture.2011.06.010
  51. Pérez-Jiménez A., Guedes M.J., Morales A.E., Oliva-Teles A., (2007). Metabolic responses to short starvation and refeeding in Dicentrarchus labrax. Effect of dietary composition. Aquaculture, 265: 325–335.10.1016/j.aquaculture.2007.01.021
  52. Pérez-Jiménez A., Cardenete G., Hidalgo M.C., García-Alcázar A., Abellán E., Morales A.E. (2012). Metabolic adjustments of Dentex dentex to prolonged starvation and re-feeding. Fish Physiol. Biochem., 38: 1145–1157.10.1007/s10695-011-9600-2
  53. Rodríguez A., Gisbert E., Castelló-Orvay F. (2005). Nutritional condition of Anguilla anguilla starved at various salinities during the elver phase. J. Fish Biol., 67: 521–534.10.1111/j.0022-1112.2005.00760.x
  54. Rueda F.M., Martinez F.J., Zamora S., Kentouri M., Divanach P. (1998). Effect of fasting and refeeding on growth and body composition of red porgy (Pagrus pagrus L.). Aquacult. Res., 29: 447–452.10.1111/j.1365-2109.1998.tb01152.x
  55. Sakakura Y., Tsukamoto K. (1998). Effects of density, starvation, and size difference on aggressive behaviour in juvenile yellowtails (Seriola quinqueradiata). J. Appl. Ichthyol., 14: 9–13.10.1111/j.1439-0426.1998.tb00607.x
  56. Tamadoni R., Nafisi Bahabadi M., Morshedi V., Bagheri D., Mozanzadeh M.T. (2020). Effect of short term fasting and refeeding on growth, digestive enzyme activities and antioxidant defense in yellowfin seabream, Acanthopagrus latus (Houttuyn, 1782). Aquacult. Res., 51: 1437–1445.10.1111/are.14489
  57. Tian X.L., Qin J.G. (2004). Effects of previous ration restriction on compensatory growth in barramundi (Lates calcarifer). Aquaculture, 235: 273–283.10.1016/j.aquaculture.2003.09.055
  58. Triebenbach S.P., Smoker W.W., Beckman B.R., Focht R. (2009). Compensatory growth after winter food deprivation in hatcheryproduced Coho salmon and Chinook salmon smolts. North Am. Jo. Aquacult., 71: 384–399.10.1577/A08-035.1
  59. Viegas I., Caballero-Solares A., Rito J., Giralt M., Pardal M.A., Metón I., Jones J.G., Baanante I.V. (2014). Expressional regulation of key hepatic enzymes of intermediary metabolism in European seabass (Dicentrarchus labrax) during food deprivation and refeeding. Comp. Biochem. Physiol. A, 174: 38–44.10.1016/j.cbpa.2014.04.004
  60. Waagbø R., Jørgensen S.M., Timmerhaus G., Breck O., Olsvik P.A. (2017). Short-term starvation at low temperature prior to harvest does not impact the health and acute stress response of adult Atlantic salmon. Peer J., 5: e3273.10.7717/peerj.3273
  61. Won E.T., Borski R.J. (2013). Endocrine regulation of compensatory growth in fish. Front. Endocrinol., 4: 74.10.3389/fendo.2013.00074
  62. Worthington Biochemical Corporation (1991). Worthington Enzyme Manual: Enzymes, Enzyme Reagents, Related Biochemical. Worthington Biochemical Corp., Freehold, New Jersey.
  63. Xiao J.-X., Zhou F., Yin N., Zhou J., Gao S., Li H., Shao Q.-J., Xu J. (2013). Compensatory growth of juvenile black sea bream, Acanthopagrus schlegelii, with cyclical feed deprivation and refeeding. Aquacult. Res., 44: 1045–1057.10.1111/j.1365-2109.2012.03108.x
  64. Yang S., He K., Yan T., Wu H., Zhou J., Zhao L., Wang Y., Gong K. (2019). Effect of starvation and refeeding on oxidative stress and antioxidant defenses in Yangtze sturgeon (Acipenser dabryanus). Fish Physiol. Biochem., 45: 987–995.10.1007/s10695-019-0609-2
  65. Yarmohammadi M., Pourkazemi M., Kazemi R., Pourdehghani M., Hassanzadeh M., Azizzadeh L. (2015). Effects of starvation and re-feeding on some hematological and plasma biochemical parameters of juvenile Persian sturgeon, Acipenser persicus Borodin, 1897. Caspian J. Environ. Sci., 13: 129–140.
  66. Yilmaz H.A., Eroldoğan O.T. (2011). Combined effects of cycled starvation and feeding frequency on growth and oxygen consumption of gilthead seabream, Sparus aurata. J. World Aquacult. Soc., 42: 522–529.10.1111/j.1749-7345.2011.00494.x
  67. Zeng L.Q., Li F.J., Li X-M., Cao Z.D., Fu S.J., Zhang Y.G. (2012). The effects of starvation on digestive tract function and structure in juvenile southern catfish (Silurus meridionalis Chen). Comp. Biochem. Physiol. A, 162: 200–211.10.1016/j.cbpa.2012.02.022
  68. Zhang X.D., Zhu Y.F., Cai L.S., Wu T.X. (2008). Effects of fasting on the meat quality and antioxidant defenses of market-size farmed large yellow croaker (Pseudosciaena crocea). Aquaculture, 280: 136–139.10.1016/j.aquaculture.2008.05.010
  69. Zheng Y., Cheng X., Tang H. (2015). Effects of starvation and refeeding on digestive enzyme activity of Megalobrama pellegrini. Adv. J. Food Sci. Technol., 7: 230–234.10.19026/ajfst.7.1300
  70. Zheng J.L., Zhu Q., Shen B., Zeng L., Zhu A.Y., Wu C.W. (2016). Effects of starvation on lipid accumulation and antioxidant response in the right and left lobes of liver in large yellow croaker Pseudosciaena crocea. Ecol. Indicat., 66: 269–274.10.1016/j.ecolind.2016.01.037
  71. Ziheng F., Xiangli T., Shuanglin D. (2017). Effects of starving and refeeding strategies on the growth performance and physiological characteristics of the juvenile tongue sole (Cynoglossus semilaevis). J. Ocean Univ. China, 16: 517–524.10.1007/s11802-017-3198-7
DOI: https://doi.org/10.2478/aoas-2021-0070 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 773 - 784
Submitted on: Jun 18, 2021
Accepted on: Aug 26, 2021
Published on: May 12, 2022
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Mansour Torfi Mozanzadeh, Omid Safari, Alireza Ghaedi, Mojtaba Zabayeh Najafabadi, Esmaeil Pagheh, Rahim Oosooli, Shapour Mehrjooyan, Seyed Javad Hoseini, Hamid Saghavi, Javad Monem, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.