Badiola M., Mendiola D., Bostock J. (2012). Recirculating aquaculture systems (RAS) analysis: main issues on management and future challenges. Aquacult. Eng., 51: 26–35.
Blecha M., Kristan J., Policar T. (2016). Adaptation of intensively reared pikeperch (Sander lucioperca) juveniles to pond culture and subsequent re-adaptation to a recirculation aquaculture system. Turk. J. Fish. Aquat. Sci., 16: 15–18.
Bojarski B., Witeska M. (2020). Blood biomarkers of herbicide, insecticide, and fungicide toxicity to fish – a review. Environ. Sci. Pollut. Res., 27: 19236–19250.
Bregnballe J. (2015). A guide to recirculation aquaculture. An introduction to the new environmentally friendly and highly productive closed fish farming systems (2015 ed.). The Food and Agriculture Organization of the United Nations (FAO) and Eurofish International Organization, Retrieved from: http://www.fao.org/3/a-i4626e.pdf
Burgdorf-Moisuk A., Mitchell M.A., Watson M. (2011). Clinical and physiologic effects of sodium chloride baths in goldfish (Carassius auratus). J. Zoo Wild. Med., 42: 586–592.
Carneiro P.C.F., Swarofsky E.C., Souza D.P.E., César T.M.R., Baglio B., Baldisserotto B. (2009). Ammonia-, sodium chloride-, and calcium sulfate-induced changes in the stress responses of jundiá, Rhamdia quelen, juveniles. J. World Aquacult. Soc., 6: 810–817.
Chagas E.C., De Araújo L.D., De Carvalho Gomes L., De Oliveira Malta J.C., Varella A. M. B. (2012). Effect of sodium chloride on physiological responses and monogenean control in tambaqui (Colossoma macropomum). Acta. Amaz., 42: 439–444.
Dick P.T., Dixon D.G. (1985). Changes in circulating blood cell levels of rainbow trout Salmo gairdneri Richardson, following acute and chronic exposure to copper. J. Fish Biol., 26: 475–481.
Diouf B., Rioux P., Blier P.U., Rajotte D. (2000). Use of brook char (Salvelinus fontinalis) physiological responses to stress as a teaching exercise. Adv. Physiol. Educ., 23: 18–23.
FAO (Food and Agriculture Organization of the United Nations) (2012). Cultured Aquatic Species Information Programme. Sander lucioperca. Cultured Aquatic Species Information Programme. In: FAO Fisheries and Aquaculture Department [online]. Roma, Italy (text by Z. Zakęś), Retrieved from http://www.fao.org/fishery/culturedspecies/Sander_lucioperca/en. Cited 02 Mar 2020.
FAO (Food and Agriculture Organization of the United Nations) (2018). The State of World Fisheries and Aquaculture 2018 – Meeting the sustainable development goals. Rome, Italy, The Food and Agriculture Organization of the United Nations (FAO), 210 pp.
Fivelstad S., Kvamme K., Handeland S., Fivelstad M., Olsen A.B., Hosfeld C.D. (2015). Growth and physiological models for Atlantic salmon (Salmo salar L.) parr exposed to elevated carbon dioxide concentrations at high temperature. Aquaculture, 436: 90–94.
Foss A., Imsland A.K., Roth B., Schram E., Stefansson S.O. (2007). Interactive effects of oxygen saturation and ammonia on growth and blood physiology in juvenile turbot. Aquaculture, 271: 244–251.
García-Magaña L., Rodríguez-Santiago M.A., Grano-Maldonado M.I., Jiménez-Vasconcelos L., Guerra-Santos J. (2019). The effectiveness of sodium chloride and formalin in trichodiniasis of farmed fresh-water tilapia Oreochromis niloticus (Linnaeus, 1758) in southeastern Mexico. Lat. Am. J. Aquat. Res., 47: 164–174.
González V., Labbé B.S., Valerio V., Vargas-Chacoff L., Martínez D., Oyarzún R., Muñoz J.L.P. (2016). Physicochemical parameters associated with the methods of application of salt baths and their field assessment of blood parameters of Atlantic salmon in water pre-smolt stage. Arch. Med. Vet., 48: 223–230.
Hoseini S.M., Tarkhani R. (2013). Serum biochemical characteristics of Carassius auratus (L) following short-term formalin or NaCl treatment. Int. J. Aquat. Biol., 1: 14–21.
Hvas M., Oppedal F. (2019). Physiological responses of farmed Atlantic salmon and two cohabitant species of cleaner fish to progressive hypoxia. Aquaculture, 512: 734353.
Knoph M.B., Thorud K. (1996). Toxicity of ammonia to Atlantic salmon (Salmo salar L.) in seawater effects on plasma osmolality, ion, ammonia, urea and glucose levels and hematologic parameters. Comp. Biochem. Physiol. A, 113: 375–381.
Kumar S., Pant S.C. (1981). Histopathologic effects of acutely toxic levels of copper and zinc on gills, liver, kidney of Puntius conchonius (Ham.). Ind. J. Exp. Biol., 19: 191–194.
Maltez L.C., Barbas A.L., Okamoto M.H., Lopes D.L.A., Romano L.A., Sampaio L.A., Garcia L. (2018). Secondary stress responses in juvenile Brazilian flounder, Paralichthys orbignyanus, throughout and after exposure to sublethal levels of ammonia and nitrite. J. World Aquac. Soc., 50: 346–358.
Meriç I. (2017). Mineral element and nutrient composition of two newly-introduced fish species (Dentex dentex and Seriola dumerili) in recirculating aquaculture system (RAS). GIDA, 42: 163–168.
Mifsud C., Rowland S.J. (2008). Use of salt to control ichthyophthiriasis and prevent saprolegniosis in silver perch, Bidyanus bidyanus. Aquac. Res., 39: 1175–1180.
Moshtaghi B., Khara H., Pazhan Z., Shenavar A. (2016). Histopathological and bacterial study of Persian sturgeon fry, Acipenser persicus (Borodin, 1897) exposed to copper sulfate and potassium permanganate. J. Parasit. Dis., 40: 779–784.
Mottahari R.S.J., Bozorgnia A., Ghiasi M., Farabi S.M.V., Toosi M. (2013). Impact of copper sulphate on hematological and some biochemical parameters of common carp (Cyprinus carpio L., 1758) in different pH. World. J. Fish. Mar. Sci., 5: 486–491.
Movahed R., Khara H., Ahmadnezhad M., Sayadboorani M. (2016). Hematological characteristics associated with parasitism in pikeperch Sander lucioperca (Percidae) from Anzali Wetland. J. Parasit. Dis., 40: 1337–1341.
Mutlu E., Aydın S., Demir T., Yanık T. (2016). Effect of zeolite and copper sulfate, administered alone and in combination on the biochemical components of blood serum of common carp, Cyprinus carpio. Pakistan J. Zool., 48: 1857–1863.
Németh S., Horváth Z., Felföldi Z., Beliczky G., Demeter K. (2013). The use of permitted ectoparasite disinfection methods on young pike-perch (Sander lucioperca) after transition from over-wintering lake to RAS. Aquac. Aquarium Conserv. Legis., 6: 1–11.
Nussey G., Van Vuren J.H.J., Du Preez H.H. (1995). Effects of copper on the differential white cell counts of the Mozambique tilapia, Oreochromis mossambicus. Comp. Biochem. Physiol. C, 111: 381–388.
Perry S.F., Gilmour K.M. (2006). Acid-base balance and CO2 excretion in fish: Unanswered questions and emerging models. Respir. Physiol. Neurobiol.,154: 199–215.
Policar T., Stejskal V., Kristan J., Podhorec P., Svinger V., Blaha M. (2013). The effect of fish size and stocking density on the weaning success of pond-cultured pikeperch Sander lucioperca L. juveniles. Aquac. Int., 21: 869–882.
Reardon I.S., Harrell R.M. (1990). Acute toxicity of formalin and copper sulfate to striped bass fingerlings held in varying salinities. Aquaculture, 87: 255–270.
Rożyński M., Demska-Zakęś K., Sikora A., Zakęś Z. (2018). Impact of inducing general anesthesia with Propiscin (etomidate) on the physiology and health of European perch (Perca fluviatilis L.). Fish. Physiol. Biochem., 44: 927–937.
Rożyński M., Ziomek E., Demska-Zakęś K., Zakęś Z. (2019). Impact of inducing general anaesthesia with MS-222 on haematological and biochemical parameters of pikeperch (Sander lucioperca). Aquac. Res., 50: 2125–2132.
Sadok S., M’Hetli M., El Abed A., Uglow R.F. (2004). Changes in some nitrogenous compounds in the blood and tissues of freshwater pikeperch (Sander lucioperca) during salinity acclimation. Comp. Biochem. Physiol. A., 138: 9–15.
Singh M. (1995). Haematological responses in a freshwater teleost Channa punctatus to experimental copper and chromium poisoning. J. Environ. Biol., 16: 339–341.
Singh M., Reddy T.V. (1990). Effect of copper sulfate on hematology, blood chemistry, and hepato-somatic index of an Indian catfish, Heteropneustes fossilis (Bloch), and its recovery. Ecotoxicol. Environ. Saf., 20: 30–35.
Steinberg K., Zimmermann J., Meyer S., Schulz C. (2019). Individual growth rates of pikeperch (Sander lucioperca) depending on water exchange rates in recirculating aquaculture systems. Aquac. Int., 27: 1025–1035.
Straus D.L., Mitchell A., Carter R.R., Steeby J.A. (2009). Optimizing copper sulfate treatments for fungus control on channel catfish eggs. J. Aquat. Anim. Health, 2: 91–97.
Zakęś Z. (2012). The effect of body size and water temperature on the results of intensive rearing of pike-perch, Stizostedion lucioperca (L.) fry under controlled conditions. Arch. Pol. Fish., 20: 165–172.
Zakęś Z., Demska-Zakęś K. (1996). Effect of diets on growth and reproductive development of juvenile pikeperch, Stizostedion lucioperca (L.), reared under intensive culture conditions. Aquac. Res., 27: 841–845.
Zakęś Z., Szczepkowski M., Szczepkowska B., Kowalska A., Kapusta A., Jarmołowicz S., Piotrowska I., Kozłowski M., Partyka K., Wunderlich K., Hopko M. (2015). Effects of stocking earthen ponds with pikeperch (Sander lucioperca (L.)) fingerlings reared in recirculating aquaculture systems – effects of fish size and the presence of predators. Bulg. J. Agric. Sci., 21: 5–11.