References
- Al Akeel R. (2013). Role of epigenetic reprogramming of host genes in bacterial pathogenesis. Saudi J. Biol. Sci., 20: 305–309.10.1016/j.sjbs.2013.05.003
- Bagnicka E., Kawecka E., Pawlina-Tyszko K., Kapusta A., Zalewska M., Kościuczuk E., Ząbek T. (2021). MicroRNA expression profile in bovine mammary gland secretory tissue parenchyma infected by coagulase-positive or coagulase-negative staphylococci. Vet. Res., 52: 41.10.1186/s13567-021-00912-2
- Bostedt H., Boryczko Z., Scheid T. (2001). Diagnostyka i terapia ostrych postaci zapalenia gruczołu mlekowego u krów (in Polish). Życie Wet., 76: 477–479.
- Bradley A.J. (2002). Bovine mastitis: an evolving disease. Vet. J., 164: 116–128.10.1053/tvjl.2002.0724
- Carr M.W., Roth S.J., Luther E., Rose S.S., Springer T.A. (1994). Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc. Natl. Acad. Sci. USA, 91: 3652–3656.10.1073/pnas.91.9.3652
- Chang G., Petzl W., Vanselow J., Günther J., Shen X., Seyfert H.M. (2015). Epigenetic mechanisms contribute to enhanced expression of immune response genes in the liver of cows after experimentally induced Escherichia coli mastitis. Vet. J., 203: 339–341.10.1016/j.tvjl.2014.12.023
- Dall E., Brandstetter H. (2016). Structure and function of legumain in health and disease. Biochimie, 122: 126–150.10.1016/j.biochi.2015.09.022
- Fijałkowski K., Czernomysy-Furowicz D., Ferlas M. (2008). Staphylococcus aureus kontra układ immunologiczny (in Polish). Post. Mikrobiol., 47: 497–501.
- Gibney E.R., Nolan C.M. (2010). Epigenetics and gene expression. Heredity (Edinb.), 105: 4–13.10.1038/hdy.2010.54
- Guiet R., Poincloux R., Castandet J., Marois L., Labrousse A., Le Cabec V., Maridonneau-Parini I. (2008). Hematopoietic cell kinase (Hck) isoforms and phagocyte duties – from signaling and actin reorganization to migration and phagocytosis. Eur. J. Cell Biol., 87: 527–542.10.1016/j.ejcb.2008.03.008
- Hagnestam-Nielsen C., Emanuelson U., Berglund B., Strandberg E. (2009). Relationship between somatic cell count and milk yield in different stages of lactation. J. Dairy Sci., 92: 3124–3133.10.3168/jds.2008-1719
- Hall T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser., 41: 95–98.
- Hinchs D., Bennewitz J., Stamer E., Junge W., Kalm E., Thaller G. (2011). Genetic analysis of mastitis data with different models. J. Dairy Sci., 94: 471–478.10.3168/jds.2010-3374
- Huang J., Luo G., Zhang Z., Wang X., Ju Z., Qi C., Zhang Y., Wang C., Li R., Li J., Yin W., Xu Y., Moisá S.J., Loor J.J., Zhong J. (2014). iTRAQ-proteomics and bioinformatics analyses of mammary tissue from cows with clinical mastitis due to natural infection with Staphylococci aureus. BMC Genomics, 15: 839.10.1186/1471-2164-15-839
- Ju Z., Jiang Q., Wang J., Wang X., Yang C., Sun Y., Zhang Y., Wang C., Gao Y., Wei X., Hou M., Huang J. (2020). Genome-wide methylation and transcriptome of blood neutrophils reveal the roles of DNA methylation in affecting transcription of protein-coding genes and miRNAs in E. coli-infected mastitis cows. BMC Genomics, 21: 102.10.1186/s12864-020-6526-z
- Kościuczuk E.M., Lisowski P., Jarczak J., Krzyżewski J., Zwierzchowski L., Bagnicka E. (2014). Expression patterns of β-defensin and cathelicidin genes in parenchyma of bovine mammary gland infected with coagulase-positive or coagulase-negative Staphylococci. BMC Vet. Res., 10: 246.10.1186/s12917-014-0246-z
- Kościuczuk E.M., Lisowski P., Jarczak J., Majewska A., Rzewuska M., Zwierzchowski L., Bagnicka E. (2017). Transcriptome profiling of Staphylococci-infected cow mammary gland parenchyma. BMC Vet. Res., 13: 161.10.1186/s12917-017-1088-2
- Leakey T., Zielinski J., Siegfried R.N., Siegel E.R., Fan C.Y., Cooney C.A. (2008). A simple algorithm for quantifying DNA methylation levels on multiple independent CpG sites in bisulfite genomic sequencing electropherograms. Nucleic Acids Res., 36: e64.10.1093/nar/gkn210
- Leitner G., Chaffer M., Krifucks O., Glickman A., Ezra E., Saran A. (2000). Milk leukocyte populations in heifers free from udder infection. J. Vet. Med. B. Infect. Dis. Vet. Public Health, 47: 133–138.10.1046/j.1439-0450.2000.00329.x
- Malinowski E., Lassa H., Kłossowska A., Smulski S., Markiewicz H., Kaczmarowski M. (2006). Etiological agents of dairy cows’ mastitis in western part of Poland. Pol. J. Vet. Sci., 9: 191–194.
- Mao Y.J., Zhu X.R., Li R., Chen D., Xin S.Y., Zhu Y.H., Liao X.X., Wang X.L., Zhang H.M., Yang Z.P., Yang L.G. (2015). Methylation analysis of CXCR1 in mammary gland tissue of cows with mastitis induced by Staphylococcus aureus. Genet. Mol. Res., 14: 12606–12615.10.4238/2015.October.19.4
- Miceli M.C., Parnes J.R. (1991). The roles of CD4 and CD8 in T cell activation. Semin. Immunol., 3: 133–141.
- Ogorevc J., Kunej T., Razpet A., Dovc P. (2009). Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim. Genet., 40: 832–851.10.1111/j.1365-2052.2009.01921.x
- Oviedo-Boyso J., Valdez-Alarcón J.J., Cajero-Juárez M., Ochoa-Zarzosa A., López-Meza J.E., Bravo-Patiño A., Baizabal-Aguirre V.M. (2007). Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J. Inf. Secur., 54: 399–409.10.1016/j.jinf.2006.06.010
- Poh A.R., O’Donoghue R.J., Ernst M. (2015). Hematopoietic cell kinase (HCK) as a therapeutic target in immune and cancer cells. Oncotarget, 6: 15752–15771.10.18632/oncotarget.4199
- R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/
- Rainard P., Cunha P., Gilbert F.B. (2016). Innate and adaptive immunity synergize to trigger inflammation in the mammary gland. PLoS One, 11:e0154172.10.1371/journal.pone.0154172
- Singh K., Molenaar A.J., Swanson K.M., Stelwagen K. (2010). DNA methylation is associated with a suppression of aS1-casein gene expression during involution and infection of the bovine mammary gland. IDF World Dairy Summit, Auckland.
- Song M.Y., He Y.H., Zhou H.K., Zhang Y., Yu Y. (2016). Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis. Sci. Rep., 6: 29390.10.1038/srep29390
- Swanson K.M., Stelwagen K., Dobson J., Henderson H.V., Davis S.R., Farr V.C., Singh K. (2009). Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. J. Dairy. Sci., 92: 117–129.10.3168/jds.2008-1382
- Thompson-Crispi K., Atalla H., Miglior F., Mallard B.A. (2014). Bovine mastitis: frontiers in immunogenetics. Front Immunol., 5: 493.10.3389/fimmu.2014.00493
- Vanselow J., Yang W., Herrmann J., Zerbe H., Schuberth H.J., Petzl W., Tomek W., Seyfert H.M. (2006). DNA-remethylation around a STAT5-binding enhancer in the alphaS1-casein promoter is associated with abrupt shutdown of alphaS1-casein synthesis during acute mastitis. J. Mol. Endocrinol., 37: 463–477.10.1677/jme.1.02131
- Viguier C., Arora S., Gilmartin N., Welbeck K., O’Kennedy R. (2009). Mastitis detection: current trends and future perspectives. Trends Biotechnol., 27: 486–493.10.1016/j.tibtech.2009.05.004
- Wang D., Wei Y., Shi L., Khan M.Z., Fan L., Wang Y., Yu Y. (2019). Genome-wide DNA methylation pattern in a mouse model reveals two novel genes associated with Staphylococcus aureus mastitis. Asian-Australas. J. Anim. Sci., 15: 203–211.10.5713/ajas.18.0858
- Wang X.S., Zhang Y., He Y.H., Ma P.P., Fan L.J., Wang Y.C., Zhang Y.I., Sun D.X., Zhang S.L., Wang C.D., Song J.Z., Yu Y. (2013). Aberrant promoter methylation of the CD4 gene in peripheral blood cells of mastitic dairy cows. Genet. Mol. Res., 12: 6228–6239.10.4238/2013.December.4.10
- Watts L.J. (1988). Etiological agents of bovine mastitis. Vet. Microbiol., 16: 41–66.10.1016/0378-1135(88)90126-5
- Xu L.L., Warren M.K., Rose W.L., Gong W., Wang J.M. (1996). Human recombinant monocyte chemotactic protein and other C-C chemokines bind and induce directional migration of dendritic cells in vitro. J. Leukoc. Biol., 60: 365–371.10.1002/jlb.60.3.365
- Ząbek T., Semik-Gurgul E., Ropka-Molik K., Szmatoła T., Kawecka-Grochocka E., Zalewska M., Kościuczuk E., Wnuk M., Bagnicka E. (2020). Locus-specific interrelations between gene expression and DNA methylation patterns in bovine mammary gland infected by coagulase-positive and coagulase-negative staphylococci. J. Dairy Sci., 103: 10689–10695.10.3168/jds.2020-18404
- Zhang Y., Wang X., Jiang Q., Hao H., Ju Z., Yang C., Sun Y., Wang C., Zhong J., Huang J., Zhu H. (2018). DNA methylation rather than single nucleotide polymorphisms regulates the production of an aberrant splice variant of IL6R in mastitic cows. Cell Stress Chaperones, 23: 617–628.10.1007/s12192-017-0871-0