Have a personal or library account? Click to login
The Effect of Hesperidin, Chrysin, and Naringenin on Somatic Cell Count in Mastitis Dairy Cows After Multiple Intramammary Administration Cover

The Effect of Hesperidin, Chrysin, and Naringenin on Somatic Cell Count in Mastitis Dairy Cows After Multiple Intramammary Administration

Open Access
|Feb 2022

References

  1. Agenäs S., Lundström I., Holtenius K. (2019). The effect of 17β-estradiol on lactose in plasma and urine in dairy cows in late lactation. J. Dairy Res., 86: 188–192.10.1017/S0022029919000281
  2. Al-Oudat B.A., Alqudah M.A., Audat S.A., Al-Balas Q.Q., El-Elimat T., Has-san M.A., Frhat I.N., Azaizeh M.M. (2019). Design, synthesis, and biologic evaluation of novel chrysin derivatives as cytotoxic agents and caspase-3/7 activators. Drug Des. Devel. Ther., 13: 423–433.10.2147/DDDT.S189476
  3. Bertoni G., Trevisi E., Cappelli F.P., Cappa V. (1994). Variation in blood parameters with mastitis of different severity in dairy cows. Proc. 18th World Buiatrics Congress: 26th Congress of the Italian Association of Buiatrics, 2: 1427–1430.
  4. Burmańczuk A., Hola P., Milczak A., Piech T., Kowalski C., Wojciechowska B., Grabowski T. (2018). Quercetin decrease somatic cells count in mastitis of dairy cows. Res. Vet. Sci., 117: 255–259.10.1016/j.rvsc.2018.01.006
  5. Cui L., Wang H., Ding Y., Li J., Li Ji. (2019). Changes in the blood routine, biochemical indexes and the pro-inflammatory cytokine expressions of peripheral leukocytes in postpartum dairy cows with metritis. BMC Vet. Res., 15: 157.10.1186/s12917-019-1912-y
  6. Ding Z., Sun G., Zhu Z. (2018). Hesperidin attenuates influenza A virus (H1N1) induced lung injury in rats through its anti-inflammatory effect. Antivir. Ther., 23: 611–615.10.3851/IMP3235
  7. European Food Safety Authority (2017). Scientific Opinion of Flavouring Group Evaluation 410 (FGE.410): 4’,5,7-trihydroxyflavanone from chemical group 25 (phenol derivatives containing ringalkyl, ring-alkoxy, and side-chains with an oxygenated functional group). EFSA Journal, 15: 1–29.
  8. Filho J.C.C, Sarria A.L.F., Becceneri A.B., Fuzer A.M., Batalhao J.R., Paranhosda Silva C.M., Carlos R.M., Vieira P.C., Fernandes J.B., Cominetti M.R. (2014). Copper (II) and 2,2′-bipyridine complexation improves chemopreventive effects of naringenin against breast tumor cells. PLoS One 9, e107058.10.1371/journal.pone.0107058
  9. Food and Drug Administration (2019). Enrichment strategies for clinical trials to support determination of effectiveness of human drugs and biological products. Guidance for Industry, pp. 1–42.
  10. Gao X., Guo M., Zhang Z., Shen P., Yang Z., Zhang N. (2017). Baicalin promotes the bacteriostatic activity of lysozyme on S. aureus in mammary glands and neutrophilic granulocytes in mice. Oncotarget, 8: 19894–19901.10.18632/oncotarget.15193
  11. Garba B., Habibullah S.A., Saidu B., Suleiman N. (2019). Effect of mastitis on some hematological and biochemical parameters of Red Sokoto goats. Vet. World, 12: 572–577.10.14202/vetworld.2019.572-577
  12. Gbylik-Sikorska M., Gajda A., Burmańczuk A., Grabowski, T., Posyniak A. (2019). Development of a UHPLC-MS/MS method for the determination of quercetin in milk and its application to a pharmacokinetic study. J. Vet. Res., 63: 87–91.10.2478/jvetres-2019-0013
  13. He X., Wei Z., Zhou E., Chen L., Kou J., Wang J., Yang Z. (2015). Baicalein attenuates inflammatory responses by suppressing TLR4 mediated NF-κB and MAPK signaling pathways in LPS-induced mastitis in mice. Int. Immunopharmacol., 28: 470–476.10.1016/j.intimp.2015.07.012
  14. Helle J., Kraker K., Bader M.I., Keiler A.M., Zierau O., Vollmer G., Welsh J., Kretzschmar G. (2014). Assessment of the proliferative capacity of the flavanones 8-prenylnaringenin, 6-(1.1-dimethylallyl)naringenin and naringenin in MCF-7 cells and the rat mammary gland. Mol. Cell. Endocrinol., 392: 125–135.10.1016/j.mce.2014.05.014
  15. Hwang S.H., Kim H.Y., Zuo G., Wang Z., Lee J.Y., Lim S.S. (2018). Anti-glycation, carbonyl trapping and anti-inflammatory activities of chrysin derivatives. Molecules, 23: 1752.10.3390/molecules23071752
  16. Lee C.J., Wilson L., Jordan M.A., Nguyen V., Tang J., Smiyun G. (2010). Hesperidin suppressed proliferations of both human breast cancer and androgen-dependent prostate cancer cells. Phytother. Res., 24 (suppl. 1): S15–S19.10.1002/ptr.2856
  17. Lee J.Y., Park W. (2015). Anti-inflammatory effect of chrysin on RAW 264.7 mouse macrophages induced with polyinosinic-polycytidylic acid. Biotechnol. Bioprocess Eng., 20: 1026–1034.10.1007/s12257-015-0416-2
  18. Li C., Schluesener H. (2017). Health-promoting effects of the citrus flavanone hesperidin. Crit. Rev. Food Sci. Nutr., 57: 613–631.10.1080/10408398.2014.906382
  19. Medina-Estrada I., López-Meza J.E., Ochoa-Zarzosa A. (2016). Anti-inflammatory and antimicrobial effects of estradiol in bovine mammary epithelial cells during Staphylococcus aureus internalization. Mediators Inflamm., 2016: 6120509.10.1155/2016/6120509
  20. Miklasińska-Majdanik M., Kępa M., Wojtyczka R.D., Idzik D., Wąsik T.J. (2018). Phenolic compounds diminish antibiotic resistance of Staphylococcus aureus clinical strains. Int. J. Environ. Res. Public Health, 15: 2321.10.3390/ijerph15102321
  21. Oguido A.P., Hohmann M.S., Pinho-Ribeiro F.A., Crespigio J., Domiciano T.P., Verri Jr.W.A., Casella A.M. (2017). Naringenin eye drops inhibit corneal neovascularization by anti-inflammatory and antioxidant mechanisms. Invest. Ophthalmol. Vis. Sci., 58: 5764–5776.10.1167/iovs.16-19702
  22. Parhiz H., Roohbakhsh A., Soltani F., Rezaee R., Iranshahi M. (2015). Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother. Res., 29: 323–331.10.1002/ptr.5256
  23. Perruchot M.-H., Gondret F., Robert F., Dupuis E., Quesnel H., Dessauge F. (2019). Effect of the flavonoid baicalin on the proliferative capacity of bovine mammary cells and their ability to regulate oxidative stress. Peer J., 7: e6565.10.7717/peerj.6565
  24. Pinho-Ribeiro F.A., Zarpelon A.C., Fattori V., Manchope M.F., Mizokami S.S., Casagrande R., Verri Jr.W.A. (2016). Naringenin reduces inflammatory pain in mice. Neuropharmacology, 105: 508–519.10.1016/j.neuropharm.2016.02.019
  25. Ren Z., Shen J., Mei X., Dong H., Li J., Yu H. (2019). Hesperidin inhibits the epithelial to mesenchymal transition induced by transforming growth factor-β1 in A549 cells through Smad signaling in the cytoplasm. Braz. J. Pharm. Sci., 55: doi:10.1590/s2175-97902019000218172.10.1590/s2175-97902019000218172
  26. Sarvesha K., Satyanarayana M.L., Narayanaswamy H.D., Rao S., Yathiraj S., Isloor S., Mukartal S.Y., Singh S.V., Anuradha M.E. (2017). Haemato-biochemical profile and milk leukocyte count in subclinical and clinical mastitis affected crossbred cattle. J. Exp. Biol. Agric. Sci., 5: 001–006.10.18006/2017.5(1).001.006
  27. Snapinn S.M., Jiang Q. (2007). Responder analyses and the assessment of a clinically relevant treatment effect. Trials, 8: 31.10.1186/1745-6215-8-31
  28. Stevens M., Piepers S., Supre K., Dewulf J., De Vliegher S. (2016). Quantification of antimicrobial consumption in adult cattle on dairy herds in Flanders, Belgium, and associations with udder health, milk quality, and production performance. J. Dairy Sci., 99: 2118–2130.10.3168/jds.2015-10199
  29. Stevens M., Piepers S., De Vliegher S. (2019). The effect of mastitis management input and implementation of mastitis management on udder health, milk quality, and antimicrobial consumption in dairy herds. J. Dairy Sci., 102: 2401–2415.10.3168/jds.2018-15237
  30. Tejada S., Pinya S., Martorell M., Capo X., Tur J., Pons A., Sureda A. (2018). Potential anti-inflammatory effects of hesperidin from the genus citrus. Curr. Med. Chem., 25: 4929–4945.10.2174/0929867324666170718104412
  31. Wu T., He M., Zang X., Zhou Y., Qiu T., Pan S., Xu X. (2013). A structure–activity relationship study of flavonoids as inhibitors of E. coli by membrane interaction effect. Biochim. Biophys. Acta, 1828: 2751–2756.10.1016/j.bbamem.2013.07.029
  32. Yart L., Finot L., Lollivier V., Dessauge F. (2013). Oestradiol enhances apoptosis in bovine mammary epithelial cells in vitro. J. Dairy Res., 80: 113–121.10.1017/S0022029912000714
  33. Zaki M.S., El-Battrawy N., Mostafa S.O., Fawzi O.M., Awad I. (2010). Some biochemical studies on Friesian suffering from subclinical mastitis. Nat. Sci., 8: 143–146.
  34. Zhang F., Dong W., Zeng W., Zhang L., Zhang C., Qiu T., Wang L., Yin X., Zhang Ch., Liang W. (2016). Naringenin prevents TGF-β1 secretion from breast cancer and suppresses pulmonary metastasis by inhibiting PKC activation. Breast Cancer Res., 18: 38.10.1186/s13058-016-0698-0
  35. Zhao Z., Jin G., Ge Y., Guo Z. (2019). Naringenin inhibits migration of breast cancer cells via inflammatory and apoptosis cell signaling pathways. Inflammopharmacology, 27: 1021–1036.10.1007/s10787-018-00556-3
  36. Zierau O., Gester S., Schwab P., Metz P., Kolba S., Wulf M., Vollmer G. (2002). Estrogenic activity of the phytoestrogens naringenin, 6-(1,1-dimethylallyl)naringenin and 8-prenylnaringenin. Planta Med., 68: 449–451.10.1055/s-2002-32089
DOI: https://doi.org/10.2478/aoas-2021-0060 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 155 - 172
Submitted on: Mar 17, 2021
Accepted on: Jul 29, 2021
Published on: Feb 4, 2022
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Artur Burmańczuk, Beata Wojciechowska, Małgorzata Gbylik-Sikorska, Anna Gajda, Włodzimierz Markiewicz, Ewa Sosin, Tomasz Grabowski, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.