Addis M., Cabiddu A., Pinna G., Decandia M., Piredda G., Pirisi A., Molle G. (2005). Milk and cheese fatty acid composition in sheep fed Mediterranean forages with reference to conjugated linoleic acid cis-9,trans-11. J. Dairy Sci., 88: 3443–3454.
Altomonte I., Salari F., Licitra R., Martini M. (2018). Use of microalgae in ruminant nutrition and implications on milk quality – A review. Livest. Sci., 214: 25–35.
Antonacci E.L., Bussetti M., Rodriguez A.M., Cano A.V., Gagliostro G.A. (2018). Effect of diet supplementation with combinations of soybean and linseed oils on milk production and fatty acid profile in lactating dairy ewes. Agric. Sci., 09: 200–220.
Azzaz H.H., Kholif A.E., Abd El Tawab A.M., Khattab M.S.A., Murad H.A., Olafadehan O.A. (2020). A newly developed tannase enzyme from Aspergillus terreus versus commercial tannase in the diet of lactating Damascus goats fed diet containing pomegranate peel. Livest. Sci., 241: 104228.
Azzaz H.H., Kholif A.E., Murad H.A., El-Bordeny N.E., Ebeid H.M., Hassaan N.A., Anele U.Y. (2021). A new pectinase produced from Aspergillus terreus compared with a commercial pectinase enhanced feed digestion, milk production and milk fatty acid profile of Damascus goats fed pectin-rich diet. Ann. Anim. Sci., 21: 639–656.
Bernard L., Shingfield K.J., Rouel J., Ferlay A., Chilliard Y. (2009). Effect of plant oils in the diet on performance and milk fatty acid composition in goats fed diets based on grass hay or maize silage. Br. J. Nutr., 101: 213–224.
Bernard L., Mouriot J., Rouel J., Glasser F., Capitan P., Pujos-Guillot E., Chardigny J.M., Chilliard Y. (2010). Effects of fish oil and starch added to a diet containing sunflower-seed oil on dairy goat performance, milk fatty acid composition and in vivo δ9-desaturation of [13C]vaccenic acid. Br. J. Nutr., 104: 346–354.
Bernard L., Toral P., Rouel J., Chilliard Y. (2016). Effects of extruded linseed and level and type of starchy concentrate in a diet containing fish oil on dairy goat performance and milk fatty acid composition. Anim. Feed Sci. Technol., 222: 31–42.
Bodas R., Manso T., Mantecón A.R., Juárez M., De La Fuente M.Á., Gómez-Cortés P. (2010). Comparison of the fatty acid profiles in cheeses from ewes fed diets supplemented with different plant oils. J. Agric. Food Chem., 58: 10493–10502.
Bu D.P., Wang J.Q., Dhiman T.R., Liu S.J. (2007). Effectiveness of oils rich in linoleic and linolenic acids to enhance conjugated linoleic acid in milk from dairy cows. J. Dairy Sci., 90: 998–1007.
Cabiddu A., Addis M., Pinna G., Decandia M., Sitzia M., Piredda G., Pirisi A., Molle G. (2006). Effect of corn and beet pulp based concentrates on sheep milk and cheese fatty acid composition when fed Mediterranean fresh forages with particular reference to conjugated linoleic acid cis-9, trans-11. Anim. Feed Sci. Technol., 131: 292–311.
Cabiddu A., Molle G., Decandia M., Spada S., Fiori M., Piredda G., Addis M. (2009). Responses to condensed tannins of flowering sulla (Hedysarum coronarium L.) grazed by dairy sheep. Part 2: Effects on milk fatty acid profile. Livest. Sci., 123: 230–240.
Castro T., Martinez D., Isabel B., Cabezas A., Jimeno V. (2019). Vegetable oils rich in polyunsaturated fatty acids supplementation of dairy cows’ diets: Effects on productive and reproductive performance. Animals, 9: 205.
Chilliard Y., Glasser F., Ferlay A., Bernard L., Rouel J., Doreau M. (2007). Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol., 109: 828–855.
Chilliard Y., Martin C., Rouel J., Doreau M. (2009). Milk fatty acids in dairy cows fed whole crude linseed, extruded linseed, or linseed oil, and their relationship with methane output. J. Dairy Sci., 92: 5199–5211.
de la Torre-Santos S., Royo L.J., Martínez-Fernández A., Chocarro C., Vicente F. (2020). The mode of grass supply to dairy cows impacts on fatty acid and antioxidant profile of milk. Foods, 9: 1256.
De Renobales M., Amores G., Arranz J., Virto M., Barrón L.J.R., Bustamante M.A., Ruiz De Gordoa J.C., Nájera A.I., Valdivielso I., Abilleira E., Beltrán De Heredia I., Pérez-Elortondo F.J., Ruiz R., Albisu M., Mandaluniz N. (2012). Part-time grazing improves sheep milk production and its nutritional characteristics. Food Chem., 130: 90–96.
Dewhurst R.J., Moloney A.P. (2013). Modification of animal diets for the enrichment of dairy and meat products with omega-3 fatty acids, in: Food Enrichment with Omega-3 Fatty Acids. Elsevier, pp. 257–287.
El-Zaiat H.M., Kholif A.E., Moharam M.S., Attia M.F., Abdalla A.L., Sallam S.M.A. (2020). The ability of tanniniferous legumes to reduce methane production and enhance feed utilization in Barki rams: in vitro and in vivo evaluation. Small Rumin. Res., 193: 106259.
Erdman J., Oria M., Pillsbury L. (2011). Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In: Nutrition and traumatic brain injury: improving acute and subacute health outcomes in military personnel, J. Erdman, M. Oria, L. Pillsbury (eds). The National Academies Press, Washington, DC, pp. 188–204.
Fahim N.H., Kholif A.E., Azzaz H.H. (2022). Fennel and ginger improved nutrient digestibility and milk yield and quality in early lactating Egyptian buffaloes. Ann. Anim. Sci., 22: 255–270.
Gebreyowhans S., Lu J., Zhang S., Pang X., Lv J. (2019). Dietary enrichment of milk and dairy products with n-3 fatty acids: A review. Int. Dairy J., 97: 158–166.
Glover K.E., Budge S., Rose M., Rupasinghe H.P.V., MacLaren L., Green-Johnson J., Fredeen A.H. (2012). Effect of feeding fresh forage and marine algae on the fatty acid composition and oxidation of milk and butter. J. Dairy Sci., 95: 2797–2809.
Gomaa A.S., Kholif A.E., Kholif A.M., Salama R., El-Alamy H.A., Olafadehan O.A. (2018). Sunflower oil and Nannochloropsis oculata microalgae as sources of unsaturated fatty acids for mitigation of methane production and enhancing diets’ nutritive value. J. Agric. Food Chem., 66: 1751–1759.
Gómez-Cortés P., Cívico A., De La Fuente M.A., Núñez Sánchez N., Peña Blanco F., Martinez Marin A.L. (2018). Effects of dietary concentrate composition and linseed oil supplementation on the milk fatty acid profile of goats. Animal, 12: 2310–2317.
Hurtaud C., Faucon F., Couvreur S., Peyraud J.L. (2010). Linear relationship between increasing amounts of extruded linseed in dairy cow diet and milk fatty acid composition and butter properties. J. Dairy Sci., 93: 1429–1443.
Jones E.L., Shingfield K.J., Konen C., Jones A.K., Lupoli B., Grandison A.S., Beever D.E., Williams C.M., Calder P.C., Yaqoob P. (2005). Chemical, physical, and sensory properties of dairy products enriched with conjugated linoleic acid. J. Dairy Sci., 88: 2923–2937.
Kalač P., Samková E. (2010). The effects of feeding various forages on fatty acid composition of bovine milk fat: A review. Czech J. Anim. Sci., 55: 521–537.
Kholif A.E., Gouda G.A., Morsy T.A., Salem A.Z.M., Lopez S., Kholif A.M. (2015). Moringa oleifera leaf meal as a protein source in lactating goat’s diets: Feed intake, digestibility, ruminal fermentation, milk yield and composition, and its fatty acids profile. Small Rumin. Res., 129: 129–137.
Kholif A.E., Morsy T.A., Abd El Tawab A.M., Anele U.Y., Galyean M.L. (2016 a). Effect of supplementing diets of Anglo-Nubian goats with soybean and flaxseed oils on lactational performance. J. Agric. Food Chem., 64: 6163–6170.10.1021/acs.jafc.6b0262527415418
Kholif A.E., Gouda G.A., Olafadehan O.A., Abdo M.M. (2018 a). Effects of replacement of Moringa oleifera for berseem clover in the diets of Nubian goats on feed utilisation, and milk yield, composition and fatty acid profile. Animal, 12: 964–972.10.1017/S175173111700233628988560
Kholif A.E., Kassab A.Y., Azzaz H.H., Matloup O.H., Hamdon H.A., Olafadehan O.A., Morsy T.A. (2018 b). Essential oils blend with a newly developed enzyme cocktail works synergistically to enhance feed utilization and milk production of Farafra ewes in the subtropics. Small Rumin. Res., 161: 43–50.10.1016/j.smallrumres.2018.02.011
Kholif A.E., Hassan A.A., Matloup O.H., El Ashry G.M. (2021 b). Top-dressing of chelated phytogenic feed additives in the diet of lactating Friesian cows to enhance feed utilization and lactational performance. Ann. Anim. Sci., 21: 657–667.10.2478/aoas-2020-0086
Kliem K.E., Morgan R., Humphries D.J., Shingfield K.J., Givens D.I. (2008). Effect of replacing grass silage with maize silage in the diet on bovine milk fatty acid composition. Animal, 2: 850–1858.
Kliem K.E., Humphries D.J., Kirton P., Givens D.I., Reynolds C.K. (2019). Differential effects of oilseed supplements on methane production and milk fatty acid concentrations in dairy cows. Animal, 13: 309–317.
Kupczyński R., Szołtysik M., Janeczek W., Chrzanowska J., Kinal S., Króliczewska B. (2011). Effect of dietary fish oil on milk yield, fatty acids content and serum metabolic profile in dairy cows. J. Anim. Physiol. Anim. Nutr. (Berl.), 95: 512–522.
Martínez Marín A.L., Gómez-Cortés P., Gómez Castro A.G., Juárez M., Pérez Alba L.M., Pérez Hernández M., de la Fuente M.A. (2011). Animal performance and milk fatty acid profile of dairy goats fed diets with different unsaturated plant oils. J. Dairy Sci., 94: 5359–5368.
Moate P.J., Williams S.R.O., Hannah M.C., Eckard R.J., Auldist M.J., Ribaux B.E., Jacobs J.L., Wales W.J. (2013). Effects of feeding algal meal high in docosahexaenoic acid on feed intake, milk production, and methane emissions in dairy cows. J. Dairy Sci., 96: 3177–3188.
Mohammed R., Stanton C.S., Kennelly J.J., Kramer J.K.G., Mee J.F., Glimm D.R., O’Donovan M., Murphy J.J. (2009). Grazing cows are more efficient than zero-grazed and grass silage-fed cows in milk rumenic acid production. J. Dairy Sci., 92: 3874–3893.
Moran C.A., Morlacchini M., Keegan J.D., Fusconi G. (2018). The effect of dietary supplementation with Aurantiochytrium limacinum on lactating dairy cows in terms of animal health, productivity and milk composition. J. Anim. Physiol. Anim. Nutr. (Berl.), 102: 576–590.
Morsy T.A., Kholif A.E., Kholif S.M., Kholif A.M., Sun X., Salem A.Z.M. (2016). Effects of two enzyme feed additives on digestion and milk production in lactating Egyptian buffaloes. Ann. Anim. Sci., 16: 209–222.
Mozzon M., Frega N.G., Fronte B., Tocchini M. (2002). Effect of dietary fish oil supplements on levels of n-3 polyunsaturated fatty acids, trans acids and conjugated linoleic acid in ewe milk. Food Technol. Biotechnol., 40: 213–219.
Nelson K.A.S., Martini S. (2009). Increasing omega fatty acid content in cow’s milk through diet manipulation: Effect on milk flavor. J. Dairy Sci., 92: 1378–1386.
Novotná K., Fantová M., Nohejlová L., Borková M., Stádník L., Ducháček J. (2017). Effect of Chlorella vulgaris and Japonochytrium sp. microalgae supplementation on composition and fatty acid profile of goat milk. Acta Univ. Agric. Silvic. Mendelianae Brun., 65: 1585–1593.
Nudda A., Battacone G., Neto O.B., Cannas A., Francesconi A.H.D., Atzori A.S., Pulina G. (2014). Feeding strategies to design the fatty acid profile of sheep milk and cheese. Rev. Bras. Zootec., 43: 445–456.
Pajor F., Egerszegi I., Steiber O., Bodnár Á., Póti P. (2019). Effect of marine algae supplementation on the fatty acid profile of milk of dairy goats kept indoor and on pasture. J. Anim. Feed Sci., 28: 169–176.
Pi Y., Gao S.T., Ma L., Zhu Y.X., Wang J.Q., Zhang J.M., Xu J.C., Bu D.P. (2016). Effectiveness of rubber seed oil and flaxseed oil to enhance the α-linolenic acid content in milk from dairy cows. J. Dairy Sci., 99: 5719–5730.
Pintus S., Murru E., Carta G., Cordeddu L., Batetta B., Accossu S., Pistis D., Uda S., Ghiani M.E., Mele M., Secchiari P., Almerighi G., Pintus P., Banni S. (2013). Sheep cheese naturally enriched in α-linolenic, conjugated linoleic and vaccenic acids improves the lipid profile and reduces anandamide in the plasma of hypercholesterolaemic subjects. Brit. J. Nutr., 109: 1453–1462.
Pulina G., Nudda A., Battacone G., Cannas A. (2006). Effects of nutrition on the contents of fat, protein, somatic cells, aromatic compounds, and undesirable substances in sheep milk. Anim. Feed Sci. Technol., 131: 255–291.
Rego O.A., Cabrita A.R.J., Rosa H.J.D., Alves S.P., Duarte V., Fonseca A.J.M., Vouzela C.F.M., Pires F.R., Bessa R.J.B. (2016). Changes in milk production and milk fatty acid composition of cows switched from pasture to a total mixed ration diet and back to pasture. Ital. J. Anim. Sci., 15: 76–86.
Rojo R., Kholif A.E., Salem A.Z.M., Elghangour M.M.Y., Odongo N.E., Montes de Oca R., Rivero N., Alonso M.U. (2015). Influence of cellulase addition to dairy goat diets on digestion and fermentation, milk production and fatty acid content. J. Agric. Sci., 153: 1514–1523.
Shaaban M.M., Kholif A.E., Abd El Tawab A.M., Radwan M.A., Hadhoud F.I., Khattab M.S.A., Saleh H.M., Anele U.Y. (2021). Thyme and celery as potential alternatives to ionophores use in livestock production: their effects on feed utilization, growth performance and meat quality of Barki lambs. Small Rumin. Res., 200: 106400.
Stamey J.A., Shepherd D.M., de Veth M.J., Corl B.A. (2012). Use of algae or algal oil rich in n-3 fatty acids as a feed supplement for dairy cattle. J. Dairy Sci., 95: 5269–5275.
Suksombat W., Thanh L.P., Meeprom C., Mirattanaphrai R. (2016). Effect of linseed oil supplementation on performance and milk fatty acid composition in dairy cows. Anim. Sci. J., 87: 1545–1553.
Thanh L.P., Suksombat W. (2015). Milk yield, composition, and fatty acid profile in dairy cows fed a high-concentrate diet blended with oil mixtures rich in polyunsaturated fatty acids. Asian-Australas. J. Anim. Sci., 28: 796–806.
Till B.E., Huntington J.A., Kliem K.E., Taylor-Pickard J., Sinclair L.A. (2020). Long term dietary supplementation with microalgae increases plasma docosahexaenoic acid in milk and plasma but does not affect plasma 13,14-dihydro-15-keto PGF2α concentration in dairy cows. J. Dairy Res., 87: 14–22.
Toral P.G., Hervás G., Gómez-Cortés P., Frutos P., Juárez M., de la Fuente M.A. (2010). Milk fatty acid profile and dairy sheep performance in response to diet supplementation with sunflower oil plus incremental levels of marine algae. J. Dairy Sci., 93: 1655–1667.
Toral P.G., Hervás G., Belenguer A., Bichi E., Frutos P. (2013). Effect of the inclusion of quebracho tannins in a diet rich in linoleic acid on milk fatty acid composition in dairy ewes. J. Dairy Sci., 96: 431–439.
Toral P.G., Rouel J., Bernard L., Chilliard Y. (2014). Interaction between fish oil and plant oils or starchy concentrates in the diet: Effects on dairy performance and milk fatty acid composition in goats. Anim. Feed Sci. Technol., 198: 67–82.
Vafa T.S., Naserian A.A., Moussavi A.R.H., Valizadeh R., Mesgaran M.D. (2012). Effect of supplementation of fish and canola oil in the diet on milk fatty acid composition in early lactating Holstein cows. Asian-Australas. J. Anim. Sci., 25: 311–319.