Auffret M.D., Dewhurst R.J., Duthie C.-A., Rooke J.A., John Wallace R., Freeman T.C., Stewart R., Watson M., Roehe R. (2017). The rumen microbiome as a reservoir of antimicrobial resistance and pathogenicity genes is directly affected by diet in beef cattle. Microbiome, 5: 159.10.1186/s40168-017-0378-z
Banerjee G., Pal R., Ray A.K. (2015). Applications of nutrigenomics in animal sectors: A Review. Asian J. Anim. Vet. Adv., 10: 489–499.10.3923/ajava.2015.489.499
Begum G., Stevens A., Smith E.B., Connor K., Challis J.R.G., Bloomfield F., White A. (2012). Epigenetic changes in fetal hypothalamic energy regulating pathways are associated with maternal undernutrition and twinning. FASEB J., 26: 1694–1703.10.1096/fj.11-198762
Behrem S. (2021). Estimation of genetic parameters for pre-weaning growth traits in Central Anatolian Merino sheep. Small Rumin. Res., 106319.10.1016/j.smallrumres.2021.106319
Bionaz M. (2014). Nutrigenomics approaches to fine-tune metabolism and milk production: is this the future of ruminant nutrition? Adv. Dairy Res., 2: 1–2.10.4172/2329-888X.1000e107
Bionaz M., Osorio J.S., Loor J.J. (2015). Nutrigenomics in dairy cows: Nutrients, transcription factors, and techniques. J. Anim. Sci., doi:10.2527/jas2015-9192.
Cedervall P.E., Dey M., Pearson A.R., Ragsdale S.W., Wilmot C.M. (2010). Structural insight into methyl-coenzyme M reductase chemistry using coenzyme B analogues. Biochemistry, 49: 7683–7693.10.1021/bi100458d
da Costa A.S.H., Pires V.M.R., Fontes C.M.G.A., Mestre Prates J.A. (2013). Expression of genes controlling fat deposition in two genetically diverse beef cattle breeds fed high or low silage diets. BMC Vet. Res., 9: doi:10.1186/1746-6148-9-118.10.1186/1746-6148-9-118369174623767408
Dupuis L., Schuermann Y., Cohen T., Siddappa D., Kalaiselvanraja A., Pansera M., Bordignon V., Duggavathi R. (2014). Role of leptin receptors in granulosa cells during ovulation. Reproduction, 147: 221–229.10.1530/REP-13-0356
Ebrahimi M., Rajion M.A., Goh Y.M. (2014). Effects of oils rich in linoleic and α-linolenic acids on fatty acid profile and gene expression in goat meat. Nutrients, 6: 3913–3928.10.3390/nu6093913
Elgendy R., Giantin M., Castellani F., Grotta L., Palazzo F., Dacasto M., Martino G. (2016). Transcriptomic signature of high dietary organic selenium supplementation in sheep: A nutrigenomic insight using a custom microarray platform and gene set enrichment analysis. J. Anim. Sci., 94: 3169–3184.10.2527/jas.2016-0363
Elgendy R., Palazzo F., Castellani F., Giantin M., Grotta L., Cerretani L., Dacasto M., Martino G. (2017). Transcriptome profiling and functional analysis of sheep fed with high zinc-supplemented diet: A nutrigenomic approach. Anim. Feed Sci. Technol., 234: 195–204.10.1016/j.anifeedsci.2017.10.007
Haas Y. de, Garnsworthy P.C., Kuhla B., Negussie E., Pszczola M., Wall E., Lassen J. (2016). Genetic control of greenhouse gas emissions. Adv. Anim. Biosci., 7: 196–199.10.1017/S2040470016000121
Harvatine K.J., Bauman D.E. (2006). SREBP1 and thyroid hormone responsive spot 14 (S14) are involved in the regulation of bovine mammary lipid synthesis during diet-induced milk fat depression and treatment with CLA. J. Nutr., 136: 2468–2474.10.1093/jn/136.10.2468
Hasan M.S., Feugang J.M., Liao S.F. (2019). A nutrigenomics approach using RNA Sequencing technology to study nutrient – gene. Curr. Dev. Nutr., 1–12.10.1093/cdn/nzz082
Horikawa A., Ogasawara H., Okada K., Kobayashi M., Muroya S., Hojito M. (2015). Grazing-induced changes in muscle microRNA-206 and -208b expression in association with myogenic gene expression in cattle. Anim. Sci. J., 86: 952–960.10.1111/asj.12381
Jacometo C.B., Zhou Z., Luchini D., Trevisi E., Corrêa M.N., Loor J.J. (2016). Maternal rumen-protected methionine supplementation and its effect on blood and liver biomarkers of energy metabolism, inflammation, and oxidative stress in neonatal Holstein calves. J. Dairy Sci., 99: 6753–6763.10.3168/jds.2016-11018
Johnsen L., Kongsted A.H., Nielsen M.O. (2013). Prenatal undernutrition and postnatal overnutrition alter thyroid hormone axis function in sheep. J. Endocrinol., 216: 389–402.10.1530/JOE-12-0389
Kadzere C. (2018). Environmentally smart animal agriculture and integrated advisory services ameliorate the negative effects of climate change on production. S. Afr. J. Anim. Sci., 48: 842–857.10.4314/sajas.v48i5.5
Landau S., Bor A., Leibovich H., Zoref Z., Nitsan Z., Madar Z. (1995). The effect of ruminal starch degradability in the diet of Booroola crossbred ewes on induced ovulation rate and prolificacy. Anim. Reprod. Sci., 38: 97–108.10.1016/0378-4320(94)01355-P
Lassen J., Løvendahl P. (2016). Heritability estimates for enteric methane emissions from Holstein cattle measured using noninvasive methods. J. Dairy Sci., 99: 1959–1967.10.3168/jds.2015-10012
Leroux C., Bernard L., Faulconnier Y., Rouel J., De La Foye A., Domagalski J., Chilliard Y. (2016). Bovine mammary nutrigenomics and changes in the milk composition due to rapeseed or sunflower oil supplementation of high-forage or high-concentrate diets. J. Nutrigenet. Nutrigenomics, 9: 65–82.10.1159/000445996
Leroy J.L.M.R., Sturmey R.G., Van Hoeck V., De Bie J., Mckeegan P.J., Bols P.E.J. (2014). Dietary fat supplementation and the consequences for oocyte and embryo quality: Hype or significant benefit for dairy cow reproduction? Reprod. Domest. Anim., 49: 353–361.10.1111/rda.12308
Liu X., Usman T., Wang Y., Wang Z., Xu X., Wu M., Zhang Y., Zhang X., Li Q., Liu L., Shi W., Qin C., Geng F., Wang C., Tan R., Huang X., Liu A., Wu H., Tan S., Yu Y. (2015). Polymorphisms in epigenetic and meat quality related genes in fourteen cattle breeds and association with beef quality and carcass traits. Asian-Australas. J. Anim. Sci., 28: 467–475.10.5713/ajas.13.0837
Liu X.S., Wu H., Ji X., Stelzer Y., Wu X., Czauderna S., Shu J., Dadon D., Young R.A., Jaenisch R. (2016). Editing DNA methylation in the mammalian genome. Cell, 167: 233–247.10.1016/j.cell.2016.08.056
Liu D., Zhao L., Wang Z., Zhou X., Fan X., Li Y., Xu J., Hu S., Niu M., Song X., Li Y., Zuo L., Lei C., Zhang M., Tang G., Huang M., Zhang N., Duan L., Lv H., Zhang M., Li J., Xu L., Kong F., Feng R., Jiang Y. (2019). EWASdb: Epigenome-wide association study database. Nucleic Acids Res., 47: D989–D993.10.1093/nar/gky942
Manzanilla-Pech C.I.V., De Haas Y., Hayes B.J., Veerkamp R.F., Khansefid M., Donoghue K.A., Arthur P.F., Pryce J.E. (2016). Genomewide association study of methane emissions in Angus beef cattle with validation in dairy cattle. J. Anim. Sci., 94: 4151–4166.10.2527/jas.2016-0431
Masotti A., Da Sacco L., Bottazzo G.F., Alisi A. (2010). Microarray technology: a promising tool in nutrigenomics. Crit. Rev. Food Sci. Nutr., 50: 693–698.10.1080/10408390903044156
McDonald J.I., Celik H., Rois L.E., Fishberger G., Fowler T., Rees R., Kramer A., Martens A., Edwardsand J.R., Challen G.A. (2016). Reprogrammable CRISPR/Cas9-based system for inducing sitespecific DNA methylation. Biol. Open, 5: 866–874.10.1242/bio.019067
Montes F., Meinen R., Dell C., Rotz A., Hristov A.N., Oh J., Waghorn G., Gerber P.J., Henderson B., Makkar H.P.S., Dijkstra J. (2013). Special topics – Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. J. Anim. Sci., 91: 5070–5094.10.2527/jas.2013-6584
Murdoch B.M., Murdoch G.K., Greenwood S., McKay S. (2016). Nutritional influence on epigenetic marks and effect on livestock production. Front. Genet., 7: 1–10.10.3389/fgene.2016.00182
Ommen B. van, Keijer J., Kleemann R., Elliott R., Christian A.D., McArdle H., Gibney M., Muller M. (2008). The challenges for molecular nutrition research 2: quantification of the nutritional phenotype. Genes Nutr., 51–59.10.1007/s12263-008-0084-3
Opio C., Gerber P., Mottet A., Falcucci A., Tempio G., MacLeod M., Vellinga T., Henderson B., Steinfeld H. (2013). Greenhouse gas emissions from ruminant supply chains – A global life cycle assessment. Food and Agriculture Organization of the United Nations (FAO), Rome.
Osorio J.S., Trevisi E., Ballou M.A., Bertoni G., Drackley J.K., Loor J.J. (2013). Effect of the level of maternal energy intake prepartum on immunometabolic markers, polymorphonuclear leukocyte function, and neutrophil gene network expression in neonatal holstein heifer calves. J. Dairy Sci., 96: 3573–3587.10.3168/jds.2012-5759
Osorio J.S., Vailati-Riboni M., Palladino A., Luo J. (2017). Application of nutrigenomics in small ruminants: Lactation, growth, and beyond. Small Rumin. Res., 154: 29.10.1016/j.smallrumres.2017.06.021
Peñagaricano F., Souza A.H., Carvalho P.D., Driver A.M., Gambra R., Kropp J., Hackbart K. S., Luchini D., Shaver R.D., Wiltbank M.C., Khatib H. (2013). Effect of maternal methionine supplementation on the transcriptome of bovine preimplantation embryos. PLoS One, 8: doi:10.1371/journal.pone.0072302.10.1371/journal.pone.0072302374912223991086
Pisani L.F., Antonini S., Pocar P., Ferrari S., Brevini T.A.L., Rhind S.M., Gandolfi F. (2008). Effects of pre-mating nutrition on mRNA levels of developmentally relevant genes in sheep oocytes and granulosa cells. Reproduction, 303–312.10.1530/REP-07-039418515315
Pszczola M., Strabel T., Mucha S., Sell-Kubiak E. (2018). Genomewide association identifies methane production level relation to genetic control of digestive tract development in dairy cows. Sci. Rep., 8: 1–11.10.1038/s41598-018-33327-9
Qu Y.H., Jian L.Y., Ce L., Ma Y., Xu C.C., Gao Y.F., Machaty Z., Luo H.L. (2019). Identification of candidate genes in regulation of spermatogenesis in sheep testis following dietary vitamin E supplementation. Anim. Reprod. Sci., 205: 52–61.10.1016/j.anireprosci.2019.04.003
Remely M., Stefanska B., Lovrecic L., Magnet U., Haslberger A.G. (2015). Nutriepigenomics: The role of nutrition in epigenetic control of human diseases. Curr. Opin. Clin. Nutr. Metab. Care, 18: 328–333.10.1097/MCO.0000000000000180
Schären M., Frahm J., Kersten S., Meyer U., Hummel J., Breves G., Dänicke S. (2018). Interrelations between the rumen microbiota and production, behavioral, rumen fermentation, metabolic, and immunological attributes of dairy cows. J. Dairy Sci., 101: 4615–4637.10.3168/jds.2017-13736
Schmidt S., Hommel A., Gawlik V., Augustin R., Junicke N., Florian S., Richter M., Walther D.J., Montag D., Joost H.G., Schürmann A. (2009). Essential role of glucose transporter GLUT3 for post-implantation embryonic development. J. Endocrinol., 200: 23–33.10.1677/JOE-08-0262
Shi W., Moon C.D., Leahy S.C., Kang D., Froula J., Kittelmann S., Fan C., Deutsch S., Gagic D., Seedorf H., Kelly W.J., Atua R., Sang C., Soni P., Li D., Pinares-Patiño C.S., McEwan J.C., Janssen P.H., Chen F., Visel A., Wang Z., Attwood G.T., Rubin E.M. (2014). Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Res., 24: 1517–1525.10.1101/gr.168245.113
Sinclair K.D., Allegrucci C., Singh R., Gardner D.S., Sebastian S., Bispham J., Thurston A., Huntley J.F., Rees W.D., Maloney C.A., Lea R.G., Craigon J., McEvoy T.G., Young L. E. (2007). DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc. Natl. Acad. Sci. USA, 104: 19351–19356.10.1073/pnas.0707258104
Sohel M.M.H., Akyuz B., Konca Y., Arslan K., Gurbulak K., Abay M., Kaliber M., Cinar M. U. (2020). Differential protein input in the maternal diet alters the skeletal muscle transcriptome in fetal sheep. Mamm. Genome, 31: 309–324.10.1007/s00335-020-09851-3
Vojta A., Dobrinic P., Tadic V., Bockor L., Korac P., Julg B., Klasic M., Zoldos V. (2016). Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res., 44: 5615–5628.10.1093/nar/gkw159
Vosman J.J., Jong G. de, Eding H., Knijn H. (2015). Genetic evaluation for ketosis in the Netherlands based on FTIR measurements. Interbull Bull., 49: 1–5.
Wang B., Yang Q., Harris C.L., Nelson M.L., Busboom J.R., Zhu M.J., Du M. (2016). Nutrigenomic regulation of adipose tissue development – role of retinoic acid: A review. Meat Sci., 120: 100–106.10.1016/j.meatsci.2016.04.003
Warnefors M., Eyre-Walker A. (2012). A selection index for gene expression evolution and its application to the divergence between humans and chimpanzees. PLoS One, 7: doi:10.1371/journal. pone.003493510.1371/journal.pone.0034935