Have a personal or library account? Click to login

Mining for the association of bovine mastitis linked genes to pathological signatures and pathways

Open Access
|May 2022

References

  1. Cai Z., Guldbrandtsen B., Lund M.S., Sahana G. (2018). Prioritizing candidate genes post-GWAS using multiple sources of data for mastitis resistance in dairy cattle. BMC Genomics, 19: 656.10.1186/s12864-018-5050-x
  2. Chen Z., Xu X., Tan T., Chen D., Liang H. (2019). MicroRNA-145 regulates immune cytokines via targeting FSCN1 in Staphylococcus aureus-induced mastitis in dairy cows. Reprod. Domest. Anim., 54: 882–891.10.1111/rda.13438
  3. Fang L., Hou Y., An J., Li B., Song M. (2016). Genome-wide transcriptional and post-transcriptional regulation of innate immune and defense responses of bovine mammary gland to Staphylococcus aureus. Front. Cell. Infect. Microbiol., 6: 193.10.3389/fcimb.2016.00193
  4. FresnoVara J.A., Casado E., de Castro J., Cejas P., Belda-Iniesta C., González-Barón M. (2004). P13K/Akt signalling pathway and cancer. Cancer Treatment Rev., 30: 193–204.10.1016/j.ctrv.2003.07.007
  5. Gomes F., Henriques M. (2016). Control of bovine mastitis: old and recent therapeutic approaches. Curr. Microbiol., 72: 377–382.10.1007/s00284-015-0958-8
  6. Griesbeck-Zilch B., Osman M., Kühn C., Schwerin M., Bruckmaier R.H., Pfaffl M.W., Hammerle-Fickinger A., Meyer H.H., Wellnitz O. (2009). Analysis of key molecules of the innate immune system in mammary epithelial cells isolated from marker-assisted and conventionally selected cattle. J. Dairy Sci., 92: 4621–4633.10.3168/jds.2008-1954
  7. Han H. (2019). Identification of several key genes by microarray data analysis of bovine mammary gland epithelial cells challenged with Escherichia coli and Staphylococcus aureus. Gene, 683: 123–132.10.1016/j.gene.2018.10.004
  8. He Y., Song M., Zhang Y., Li X., Song Z. (2016). Whole-genome regulation analysis of histone H3 lysin 27 trimethylation in subclinical mastitis cows infected by Staphylococcus aureus. BMC Genomics, 17: 565.10.1186/s12864-016-2947-0
  9. Huang D.W., Sherman B.T., Lempicki R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocol, 4: 44–57.10.1038/nprot.2008.211
  10. Jensen K., Günther J., Talbot R., Petzl W., Zerbe H. (2013). Escherichia coli- and Staphylococcus aureus-induced mastitis differentially modulate transcriptional responses in neighbouring uninfected bovine mammary gland quarters. BMC Genomics, 14: 36.10.1186/1471-2164-14-36
  11. Karthikeyan A., Radhika G., Aravindhakshan T.V., Anilkumar K. (2016). Expression profiling of innate immune genes in milk somatic cells during subclinical mastitis in crossbred dairy cows. Anim. Biotechnol., 27: 303–309.10.1080/10495398.2016.1184676
  12. Khan M.Z., Khan A., Xiao J., Ma J., Ma Y., Chen T., Shao D., Cao Z. (2020). Overview of research development on the role of NF-κB signaling in mastitis. Animals, 10: 1625.10.3390/ani10091625
  13. Lee D., Redfern O., Orengo C. (2007). Predicting protein function from sequence and structure. Nat. Rev. Mol. Cell Biol., 8: 995–1005.10.1038/nrm2281
  14. Lu X., Yarbrough W.G. (2015). Negative regulation of RelA phosphorylation: Emerging players and their roles in cancer. Cytokine Growth Factor Rev., 26: 7–13.10.1016/j.cytogfr.2014.09.003
  15. Lutzow Y.C.S., Donaldson L., Gray C.P., Vuocolo T., Pearson R.D. (2008). Identification of immune genes and proteins involved in the response of bovine mammary tissue to Staphylococcus aureus infection. BMC Vet. Res., 4: 18.10.1186/1746-6148-4-18
  16. Ogorevc J., Kunej T., Razpet A., Dovc P. (2009). Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim. Genet., 40: 832–851.10.1111/j.1365-2052.2009.01921.x
  17. Scheffler M., Bos M., Gardizi M., König K., Michels S. (2015). PIK-3CA mutations in non-small cell lung cancer (NSCLC): Genetic heterogeneity, prognostic impact and incidence of prior malignancies. Oncotarget, 6: 1315–1326.10.18632/oncotarget.2834
  18. Sharifi S., Pakdel A., Ebrahimi M., Reecy J.M., Fazeli Farsani S., Ebrahimie E. (2018). Integration of machine learning and meta-analysis identifies the transcriptomic bio-signature of mastitis disease in cattle. PLoS One, 13: e0191227.10.1371/journal.pone.0191227
  19. Sharifi S., Pakdel A., Ebrahimie E., Aryan Y., Zefrehee M.G., Reecy J.M. (2019). Prediction of key regulators and downstream targets of E. coli induced mastitis. J. Appl. Genet., 60: 367–373.10.1007/s13353-019-00499-7
  20. Song M., He Y., Zhou H., Zhang Y., Li X. (2016). Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis. Sci. Rep., 6: 1–15.10.1038/srep29390
  21. Sousa S.A., Leitão J.H., Martins R.C., Sanches J.M., Suri J.S. (2016). Bioinformatics applications in life sciences and technologies. Biomed Res. Int., 1–2.10.1155/2016/3603827487033527274986
  22. Spaan A.N., Surewaard J., Nijland R., van Strijp G. (2013). Neutrophils versus Staphylococcus aureus: A biological tug of war. Annu. Rev. Microbiol., 67: 629–650.10.1146/annurev-micro-092412-155746
  23. Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D. (2015). Protein-protein interaction networks, integrated over the tree of life. Nucl. Acid. Res., 43: D447–D452.10.1093/nar/gku1003
  24. Tao W., Mallard B. (2007). Differentially expressed genes associated with Staphylococcus aureus mastitis of Canadian Holstein cows. Vet. Immunol. Immunopathol., 120: 201–211.10.1016/j.vetimm.2007.06.019
  25. Thompson-Crispi K., Atalla H., Miglior F., Mallard B.A. (2014). Bovine mastitis: frontiers in immunogenetics. Front. Immunol., 5: 493.10.3389/fimmu.2014.00493
  26. Tolone M., Larrondo C., Yáñez M., Newman S., Sardina T., Portolano B. (2016). Assessment of genetic variation for pathogen-specific mastitis resistance in Valle del Belice dairy sheep. BMC Vet. Res., 12: 158.10.1186/s12917-016-0781-x
  27. Wang X.G., Huang J.M., Feng M.Y., Ju Z.H., Wang C.F. (2014). Regulatory mutations in the A2M gene are involved in the mastitis susceptibility in dairy cows. Anim. Genet., 4: 28–37.10.1111/age.12099
  28. Wang X., Ma P., Liu J., Zhang Q., Zhang Y. (2015). Genome-wide association study in Chinese Holstein cows reveal two candidate genes for somatic cell score as an indicator for mastitis susceptibility. BMC Genet., 16: 111.10.1186/s12863-015-0263-3
  29. Welderufael B.G., Løvendahl P., de Koning D.J., Janss L.L.G., Fikse W.F. (2018). Genome-wide association study for susceptibility to and recoverability from mastitis in Danish Holstein cows. Front. Genet., 9: 141.10.3389/fgene.2018.00141
  30. Wiggans G.R., Cole J.B., Hubbard S.M., Sonstegard T.S. (2017). Genomic selection in dairy cattle: The USDA experience. Annu. Rev. Anim. Biosci., 5: 309–327.10.1146/annurev-animal-021815-111422
  31. Wu J., Li L., Sun Y., Huang S., Tang J. (2015). Altered molecular expression of the TLR4/NF-κB signaling pathway in mammary tissue of Chinese Holstein cattle with mastitis. PLoS One, 10: e0118458.10.1371/journal.pone.0118458
  32. Younis S., Javed Q., Blumenberg M. (2016). Meta-analysis of transcriptional responses to mastitis-causing Escherichia coli. PLoS One, 11: e0148562.10.1371/journal.pone.0148562
  33. Yuan Z., Li J., Zhang L., Gao X.H.J., Gao H.J. (2012). Investigation on BRCA1 SNPs and its effects on mastitis in Chinese commercial cattle. Gene, 505: 190–194.10.1016/j.gene.2012.05.010
  34. Yuan Z., Li J., Gao X., Xu S. (2013). SNPs identification and its correlation analysis with milk somatic cell score in bovine MBL1 gene. Mol. Biol. Rep., 40: 7–12.10.1007/s11033-012-1934-z
DOI: https://doi.org/10.2478/aoas-2021-0049 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 583 - 591
Submitted on: Jan 5, 2021
Accepted on: Jun 15, 2021
Published on: May 12, 2022
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Muhammad Zahoor Khan, Saadet Belhan, Nebi Cetin, Adnan Ayan, Adnan Khan, Irshad Ahmad, Yulin Ma, Jianxin Xiao, Jamal Muhammad Khan, Muhammad Kamal Shah, Shakeeb Ullah, Zhijun Cao, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.