Have a personal or library account? Click to login
Effects of Sex Steroid Receptor Agonists and Antagonists on the Expression of the FOXL2 Transcription Factor and its Target Genes AMH and CYP19A1 in the Neonatal Porcine Ovary Cover

Effects of Sex Steroid Receptor Agonists and Antagonists on the Expression of the FOXL2 Transcription Factor and its Target Genes AMH and CYP19A1 in the Neonatal Porcine Ovary

Open Access
|Feb 2022

References

  1. Armenti A., Zama A., Passantino L., Uzumcu M. (2008). Developmental methoxychlor exposure affects multiple reproductive parameters and ovarian folliculogenesis and gene expression in adult rats. Toxicol. Appl. Pharmacol., 233: 286–296.10.1016/j.taap.2008.09.010
  2. Aydoğan M., Barlas N. (2006). Effects of maternal 4-tert-octylphenol exposure on the reproductive tract of male rats at adulthood. Reprod. Toxicol., 22: 455–460.10.1016/j.reprotox.2006.01.004
  3. Bendixen E., Danielsen M., Larsen K., Bendixen C. (2010). Advances in porcine genomics – a toolbox for developing the pig as a model organism for molecular biomedical research. Brief. Funct. Genomics., 9: 208–219.10.1093/bfgp/elq004
  4. Bertho S., Pasquier J., Pan Q., Le Trionnaire G., Bobe J., Postlethwait J.H., Pailhoux E., Schartl M., Herpin A., Guiguen Y. (2016) Foxl2 and its relatives are evolutionary conserved players in gonadal sex differentiation. Sex Dev., 10: 111–129.10.1159/000447611
  5. Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem., 72: 248–254.10.1016/0003-2697(76)90527-3
  6. Cervantes-Camacho I., Guerrero-Estévez S.M., López M.F., Alarcón-Hernández E., López-López E. (2020). Effects of Bisphenol A on Foxl2 gene expression and DNA damage in adult viviparous fish Goodea atripinnis. J. Toxicol. Environ. Health A, 83: 95–112.10.1080/15287394.2020.1730282
  7. Cocquet J., Pailhoux E., Jaubert F., Servel N., Xia X., Pannetier M., De Baere E., Messiaen L., Cotinot C., Fellous M., Veitia R.A. (2002). Evolution and expression of FOXL2. J. Med. Genet., 39: 916–921.
  8. Crisponi L., Deiana M., Loi A., Chiappe F., Uda M., Amati P., Bisceglia L., Zelante L., Nagaraja R., Porcu S., Ristaldi M.S., Marzella R., Rocchi M., Nicolino M., Lienhardt-Roussie A., Nivelon A., Verloes A., Schlessinger D., Gasparini P., Bonneau D., Cao A., Pilia G. (2001). The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat. Genet., 27: 159–166.10.1038/84781
  9. Durlinger A.L., Gruijters M.J., Kramer P., Karels B., Ingraham H.A., Nachtigal M.W., Uilenbroek J.T., Grootegoed J.A., Themmen A.P. (2002). Anti-Müllerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology, 143: 1076–1084.10.1210/endo.143.3.8691
  10. Elzaiat M., Todeschini A.L., Caburet S., Veitia R.A. (2017). The genetic make-up of ovarian development and function: the focus on the transcription factor FOXL2. Clin. Genet., 91: 173–182.10.1111/cge.12862
  11. Fleming N.I., Knower K.C., Lazarus K.A., Fuller P.J., Simpson E.R., Clyne C.D. (2010). Aromatase is a direct target of FOXL2: C134W in granulosa cell tumors via a single highly conserved binding site in the ovarian specific promoter. PLoS ONE, 5: e14389.10.1371/journal.pone.0014389
  12. Georges A., Auguste A., Bessiere L., Vanet A., Todeschini A.L., Veitia R.A. (2014). FOXL2: a central transcription factor of the ovary. J. Mol. Endocrinol., 52: R17–33.10.1530/JME-13-0159
  13. Ghochani Y., Saini J.K., Mellon P.L., Thackray V.G. (2012). FOXL2 is involved in the synergy between activin and progestins on the follicle-stimulating hormone β-subunit promoter. Endocrinology, 153: 2023–2033.10.1210/en.2011-1763
  14. Grzesiak M., Knapczyk-Stwora K., Ciereszko R.E., Wieciech I., Slomczynska M. (2014). Alterations in luteal production of androstendione, testosterone, and estrone, but not estradiol, during mid- and late pregnancy in pigs: Effects of androgen deficiency. Theriogenology, 82: 720–733.10.1016/j.theriogenology.2014.06.005
  15. Hirano M., Wada-Hiraike O., Fu H., Akino N., Isono W., Sakurabashi A., Fukuda T., Morita Y., Tanikawa M., Miyamoto Y., Nishi Y., Yanase T., Harada M., Oishi H., Yano T., Koga K., Oda K., Kawana K., Fujii T., Osuga Y. (2017). The emerging role of FOXL2 in regulating the transcriptional activation function of estrogen receptor β: an insight into ovarian folliculogenesis. Reprod Sci., 24: 133–141.10.1177/1933719116651150
  16. Kim J.H., Yoon S., Park M., Park H.O., Ko J.J., Lee K., Bae J. (2011). Differential apoptotic activities of wild-type FOXL2 and the adult-type granulosa cell tumor-associated mutant FOXL2 (C134W). Oncogene, 30: 1653–1663.10.1038/onc.2010.541
  17. Knapczyk-Stwora K., Durlej-Grzesiak M., Ciereszko R.E., Koziorowski M., Slomczynska M. (2013). Antiandrogen flutamide affects folliculogenesis during fetal development in pigs. Reproduction, 145: 265–276.10.1530/REP-12-0236
  18. Knapczyk-Stwora K., Grzesiak M., Ciereszko R.E., Czaja E., Koziorowski M., Slomczynska M. (2018). The impact of sex steroid agonists and antagonists on folliculogenesis in the neonatal porcine ovary via cell proliferation and apoptosis. Theriogenology, 113: 19–26.10.1016/j.theriogenology.2018.02.008
  19. Knapczyk-Stwora K., Nynca A., Ciereszko R.E., Paukszto L., Jastrzebski J.P., Czaja E., Witek P., Koziorowski M., Slomczynska M. (2019). Flutamide-induced alterations in transcriptional profiling of neonatal porcine ovaries. J. Anim. Sci. Biotechnol., 10: 35.10.1186/s40104-019-0340-y
  20. Knapczyk-Stwora K., Nynca A., Ciereszko R.E., Paukszto L., Jastrzebski J.P., Czaja E., Witek P., Koziorowski M., Slomczynska M. (2020 a). Transcriptomic profiles of the ovaries from piglets neonatally exposed to 4-tert-octylphenol. Theriogenology, 153: 102–111.10.1016/j.theriogenology.2020.04.02732450468
  21. Knapczyk-Stwora K., Costa M.C., Gabriel A., Grzesiak M., Hubalewska-Mazgaj M., Witek P., Koziorowski M., Slomczynska M. (2020 b). A transcriptome approach evaluating effects of neonatal androgen and anti-androgen treatments on regulation of luteal function in sexually mature pigs. Anim. Reprod. Sci., 212: 106252.10.1016/j.anireprosci.2019.10625231864499
  22. Kummer V., Masková J., Zralý Z., Neca J., Simecková P., Vondrácek J., Machala M. (2008). Estrogenic activity of environmental polycyclic aromatic hydrocarbons in uterus of immature Wistar rats. Toxicol. Lett., 180: 212–221.10.1016/j.toxlet.2008.06.862
  23. Kuo F.T., Bentsi-Barnes I.K., Barlow G.M., Pisarska M.D. (2011). Mutant forkhead L2 (FOXL2) proteins associated with premature ovarian failure (POF) dimerize with wild-type FOXL2, leading to altered regulation of genes associated with granulosa cell differentiation. Endocrinology, 152: 3917–3929.10.1210/en.2010-0989
  24. Kuo F.T., Fan K., Bentsi-Barnes I., Barlow G.M., Pisarska M.D. (2012). Mouse forkhead L2 maintains repression of FSH-dependent genes in the granulosa cell. Reproduction, 144: 485–494.10.1530/REP-11-0259
  25. Lauretta R., Sansone A., Sansone M., Romanelli F., Appetecchia M. (2019). Endocrine disrupting chemicals: effects on endocrine glands. Front. Endocrinol. (Lausanne), 10: 178.10.3389/fendo.2019.00178
  26. Leung D.T.H., Fuller P.J., Chu S. (2016). Impact of FOXL2 mutations on signaling in ovarian granulosa cell tumors. Int. J. Biochem. Cell. Biol., 72: 51–54.10.1016/j.biocel.2016.01.003
  27. Monniaux D., Clément F., Dalbiès-Tran R., Estienne A., Fabre S., Mansanet C., Monget P. (2014). The ovarian reserve of primordial follicles and the dynamic reserve of antral growing follicles: What is the link? Biol. Reprod., 90: 85.10.1095/biolreprod.113.117077
  28. Pannetier M., Fabre S., Batista F., Kocer A., Renault L., Jolivet G., Mandon-Pepin B., Cotinot C., Veitia R., Pailhoux E. (2006). FOXL2 activates P450 aromatase gene transcription: towards a better characterization of the early steps of mammalian ovarian development. J. Mol. Endocrinol., 36: 399–413.10.1677/jme.1.01947
  29. Park M., Suh D.S., Lee K., Bae J. (2014). Positive cross talk between FOXL2 and antimüllerian hormone regulates ovarian reserve. Fertil Steril., 102: 847–855.10.1016/j.fertnstert.2014.05.031
  30. Pepling M.E. (2012). Follicular assembly: Mechanisms of action. Reproduction, 143: 139–149.10.1530/REP-11-0299
  31. Stocco C. (2008). Aromatase expression in the ovary: hormonal and molecular regulation. Steroids, 73: 473–487.10.1016/j.steroids.2008.01.017
  32. Tyndall V., Broyde M., Sharpe R., Welsh M., Drake A.J., Mc Neilly A.S. (2012). Effect of androgen treatment during foetal and/or neonatal life on ovarian function in prepubertal and adult rats. Reproduction, 143: 21–33.10.1530/REP-11-0239
  33. Uda M., Ottolenghi C., Crisponi L., Garcia J.E., Deiana M., Kimber W., Forabosco A., Cao A., Schlessinger D., Pilia G. (2004). Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum. Mol. Genet., 13: 1171–1181.10.1093/hmg/ddh124
  34. Uhlenhaut N.H., Jakob S., Anlag K., Eisenberger T., Sekido R., Kress J., Treier A.C., Klugmann C., Klasen C., Holter N.I., Riethmacher D., Schütz G., Cooney A.J., Lovell-Badge R., Treier M. (2009). Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell, 139: 1130–1142.10.1016/j.cell.2009.11.021
  35. Uzumcu M., Kuhn P.E., Marano J.E., Armenti A.E., Passantino L. (2006). Early postnatal methoxychlor exposure inhibits folliculogenesis and stimulates anti-Mullerian hormone production in the rat ovary. J. Endocrinol., 191: 549–558.10.1677/joe.1.06592
  36. Wang D.S., Kobayashi T., Zhou L.Y., Paul-Prasanth B., Ijiri S., Sakai F., Okubo K., Morohashi K., Nagahama Y. (2007). Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Mol. Endocrinol., 21: 712–725.10.1210/me.2006-0248
  37. Wang H., Wu T., Qin F., Wang L., Wang Z. (2012). Molecular cloning of Foxl2 gene and the effects of endocrine-disrupting chemicals on its mRNA level in rare minnow, Gobiocypris rarus. Fish. Physiol. Biochem., 38: 653–664.10.1007/s10695-011-9548-2
  38. Wu J., Miao C., Lv X., Zhang Y., Li Y., Wang D. (2019). Estrogen regulates forkhead transcription factor 2 to promote apoptosis of human ovarian granulosa-like tumor cells. J. Steroid Biochem. Mol. Biol., 194: 105418.10.1016/j.jsbmb.2019.105418
  39. Zhao S., Fernald R.D. (2005). Comprehensive algorithm for quantitative real-time polymerase chain reaction. J. Comput. Biol., 12: 1047–1064.10.1089/cmb.2005.12.1047
DOI: https://doi.org/10.2478/aoas-2021-0037 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 141 - 153
Submitted on: Feb 2, 2021
Accepted on: May 14, 2021
Published on: Feb 4, 2022
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Patrycja Witek, Natalia Marek, Małgorzata Grzesiak, Maria Słomczyńska, Katarzyna Knapczyk-Stwora, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.