Have a personal or library account? Click to login
Association of SNPs in AKIRIN2, TTN, EDG1 and MYBPC1 Genes with Growth and Carcass Traits in Qinchuan Cattle Cover

Association of SNPs in AKIRIN2, TTN, EDG1 and MYBPC1 Genes with Growth and Carcass Traits in Qinchuan Cattle

Open Access
|Feb 2022

References

  1. Andersson L. (2001). Genetic dissection of phenotypic diversity in farm animals. Nat. Rev. Genet., 2: 130–138.10.1038/35052563
  2. Andersson L., Georges M. (2004). Domestic-animal genomics: Deciphering the genetics of complex traits. Nat. Rev. Genet., 5: 202–212.10.1038/nrg1294
  3. Boichard D., Grohs C., Bourgeois F., Cerqueira F., Faugeras R., Neau A., Rupp R., Amigues Y., Boscher M.Y., Levéziel H. (2003). Detection of genes influencing economic traits in three French dairy cattle breeds. Genet. Sel. Evol., 35: 77–101.10.1186/1297-9686-35-1-77
  4. Casas E., Stone R.T., Keele J.W., Shackelford S.D., Kappes S.M., Koohmaraie M. (2001). A comprehensive search for quantitative trait loci affecting growth and carcass composition of cattle segregating alternative forms of the myostatin gene. J. Anim. Sci., 79: 854–860.10.2527/2001.794854x
  5. Casas E., Shackelford S.D., Keele J.W., Koohmaraie M., Smith T.P.L., Stone R.T. (2003). Detection of quantitative trait loci for growth and carcass composition in cattle. J. Anim. Sci., 81: 2976–2983.10.2527/2003.81122976x
  6. Chen Z., Zhao T.J., Li J., Gao Y.S., Meng F.G., Yan Y.B., Zhou H.M. (2011). Slow skeletal muscle myosin-binding protein-C (MYBPC1) mediates recruitment of muscle-type creatine kinase (CK) to myosin. Biochem. J., 436: 437–445.10.1042/BJ20102007
  7. China National Commissionof Animal Genetic Resources(CNCAGR). (2001). Animal Genetic Resources in China: bovine. Beijing, China, China Agriculture Press, 15–20 pp.
  8. Felius M. (1995). Cattle breeds: An encyclopedia.
  9. Gabriel S., Ziaugra L., Tabbaa D. (2009). SNP genotyping using the sequenom MassARRAY iPLEX platform. Curr. Protoc. Hum. Genet., John Wiley & Sons, Inc.10.1002/0471142905.hg0212s6019170031
  10. Galindo R.C., Doncel-Perez E., Zivkovic Z., Naranjo V., Gortazar C., Mangold A.J., Martin-Hernando M.P., Kocan K.M., dela Fuente J. (2009). Tick subolesin is an ortholog of the akirins described in insects and vertebrates. Dev. Comp. Immunol., 33: 612–617.10.1016/j.dci.2008.11.002
  11. Goto A., Matsushita K., Gesellchen V., El Chamy L., Kuttenkeuler D., Takeuchi O., Hoffmann J.A., Akira S., Boutros M., Reichhart J.M. (2008). Akirins are highly conserved nuclear proteins required for NF-kappa B-dependent gene expression in drosophila and mice. Nature Immunol., 9: 97–104.10.1038/ni1543
  12. Han S.H., Cho I.C., Ko M.S., Kim E.Y., Oh H.S. (2011). A promoter polymorphism of MSTN g.-371T>A and its associations with carcass traits in Korean cattle. Mol. Biol. Rep., 39: 3767–3772.10.1007/s11033-011-1153-z
  13. Itoh-Satoh M., Hayashi T., Nishi H., Koga Y., Arimura T., Koyanagi T., Takahashi M., Hohda S., Ueda K., Nouchi T., Hiroe M., Marumo F., Imaizumi T., Yasunami M., Kimura A. (2002). Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem. Biophys. Res. Commun., 291: 385–393.10.1006/bbrc.2002.6448
  14. Kim H., Lee S.K., Hong M.W., Park S.R., Lee Y.S., Kim J.W., Lee H.K., Jeong D.K., Song Y.H., Lee S.J. (2013). Association of a single nucleotide polymorphism in the akirin 2 gene with economically important traits in Korean native cattle. Anim. Genet., 44: 750–753.10.1111/age.12055
  15. Liu Y., Wada R., Yamashita T., Mi Y., Deng C.X., Hobson J.P., Rosenfeldt H.M., Nava V.E., Chae S.S., Lee M.J., Liu C.H., Hla T., Spiegel S., Proia R.L. (2000). Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Invest. 106: 951–961.10.1172/JCI10905
  16. Mannen H., Tsuji S., Loftus R.T., Bradley D.G. (1998). Mitochondrial DNA variation and evolution of Japanese black cattle (Bos taurus). Genetics, 150: 1169–1175.10.1093/genetics/150.3.1169
  17. Mannen H., Kohno.M., Nagata Y., Tsuji S., Amano T. (2004). Independent mitochondrial origin and historical genetic differentiation of north eastern Asian cattle. Mol. Phylogenet. Evol., 32: 539–544.10.1016/j.ympev.2004.01.010
  18. Mateescu R.G., Garrick D.J., Reecy J.M. (2017). Network analysis reveals putative genes affecting meat quality in Angus cattle. Front. Genet., 8: 171.10.3389/fgene.2017.00171
  19. Mc Clure M.C., Morsci N.S., Schnabel R.D., Kim J.W., Yao P., Rolf M.M., Mc Kay S.D., Gregg S.J., Chapple R.H., Northcutt S.L., Taylor J.F. (2010). A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Anim. Genet., 41: 597–607.10.1111/j.1365-2052.2010.02063.x
  20. Mukai F., Tsuji S., Fukazawa K., Ohtagaki S., Nambu Y. (1989). History and population structure of a closed strain of Japanese Black cattle. J. Anim. Breed. Genet., 106: 254–264.10.1111/j.1439-0388.1989.tb00239.x
  21. Namikawa T. (1980). Genetic aspects of domestication and phylogeny in cattle. Jap. J. Zootech. Sci., 51: 235–246.10.2508/chikusan.51.235
  22. National Academies of Sciences, Engineering, and Medicine (2016). Nutrient requirements of beef cattle, 8th rev. ed. Washington D.C, USA, The National Academies Press.
  23. Nei M., Roychoudhury A.K. (1974). Sampling variances of heterozygosity and genetic distance. Genetics, 76: 379–390.10.1093/genetics/76.2.379
  24. Ogawa Y., Daigo M., Amasaki H. (1989). Craniometrical estimation of the native Japanese Mishima cattle, using multivariate analysis. Anat. Anz., 168: 197–202.
  25. Peters S.O., Kizilkaya K., Garrick D.J., Fernando R.L., Reecy J.M., Weaber R.L., Silver G.A., Thomas M.G. (2012). Bayesian genome-wide association analysis of growth and yearling ultrasound measures of carcass traits in Brangus heifers. J. Anim. Sci., 90: 3398–3409.10.2527/jas.2011-4507
  26. Raza S., Khan R., Abdelnour S.A., Abd E.M., Khafaga A.F., Taha A., Ohran H., Mei C., Schreurs N.M., Zan L. (2019). Advances of molecular markers and their application for body variables and carcass traits in Qinchuan cattle. Genes (Basel), 10: 717.10.3390/genes10090717
  27. Raza S., Khan S., Amjadi M., Abdelnour S.A., Ohran H., Alanazi K.M., Abd E.M., Taha A.E., Khan R., Gong C., Schreurs N.M., Zhao C., Wei D., Zan L. (2020 a). Genome-wide association studies reveal novel loci associated with carcass and body measures in beef cattle. Arch. Biochem. Biophys., 694: 108543.10.1016/j.abb.2020.10854332798459
  28. Raza S., Liu G.Y., Zhou L., Gui L.S., Khan R., Jinmeng Y., Chugang M., Schreurs N.M., Ji R., Zan L. (2020 b). Detection of polymorphisms in the bovine leptin receptor gene affects fat deposition in two Chinese beef cattle breeds. Gene, 758: 144957.10.1016/j.gene.2020.14495732683081
  29. Raza S., Khan R., Schreurs N.M., Guo H., Gui L.S., Mei C., Zan L. (2020 c). Expression of the bovine KLF6 gene polymorphisms and their association with carcass and body measures in Qinchuan cattle (Bos taurus). Genomics, 112: 423–431.10.1016/j.ygeno.2019.03.00530880114
  30. Raza A., Shijun L., Khan R., Schreurs N.M., Manzari Z., Abd El-Aziz A.H., Ullah I., Kaster N., Shah M.A., Zan L. (2020 d). Polymorphism of the PLIN1 gene and its association with body measures and ultrasound carcass traits in Qinchuan beef cattle. Genome, 63: 483–492.10.1139/gen-2019-018432615043
  31. Sasaki Y., Nagai K., Nagata Y., Doronbekov K., Nishimura S., Yoshioka S., Fujita T., Shiga K., Miyake T., Taniguchi Y., Yamada T. (2006 a). Exploration of genes showing intramuscular fat deposition-associated expression changes in musculus longissimus muscle. Anim. Genet., 37: 40–46.10.1111/j.1365-2052.2005.01380.x16441294
  32. Sasaki Y., Miyake T., Gaillard C., Oguni T., Ohtagaki S. (2006 b). Comparison of genetic gains per year for carcass traits among breeding programs in the Japanese Brown and the Japanese Black cattle. J. Anim. Sci., 84: 317–323.10.2527/2006.842317x16424259
  33. Sasaki S., Yamada T., Sukegawa S., Miyake T., Fujita T., Morita M., Ohta T., Takahagi Y., Murakami H., Morimatsu F., Sasaki Y. (2009). Association of a single nucleotide polymorphism in akirin 2 gene with marbling in Japanese Black beef cattle. BMC Res. Notes, 2: 131.10.1186/1756-0500-2-131
  34. Seung S.Y., Ji Y.S., Seon O.W., Hyung W.J., Keun C.K., Dong S.S. (2004). Genetic relationship of Korean cattle (Hanwoo) based on nucleotide variation of mitochondrial D-loop region. Korean J. Genet., 26: 297–307.
  35. Sukegawa S., Miyake T., Takahagi Y., Murakami H., Morimatsu F., Yamada T., Sasaki Y. (2010). Replicated association of the single nucleotide polymorphism in EDG1 with marbling in three general populations of Japanese Black beef cattle. BMC Res. Notes, 3: 66.10.1186/1756-0500-3-66
  36. Takasuga A., Watanabe T., Mizoguchi Y., Hirano T., Ihara N., Takano A., Yokouchi K., Fujikawa A., Chiba K., Kobayashi N., Tatsuda K., Oe T., Furukawa-Kuroiwa M., Nishimura-Abe A., Fujita T., Inoue K., Mizoshita K., Ogino A., Sugimoto Y. (2007). Identification of bovine QTL for growth and carcass traits in Japanese Black cattle by replication and identical-by-descent mapping. Mamm. Genome, 18: 125–136.10.1007/s00335-006-0096-5
  37. Tong B., Sasaki S., Muramatsu Y., Ohta T., Kose H., Yamashiro H., Fujita T., Yamada T. (2014 a). Association of a single-nucleotide polymorphism in myosin-binding protein C, slow-type (MYBPC1) gene with marbling in Japanese Black beef cattle. Anim. Genet., 45: 611–612.10.1111/age.1217224810268
  38. Tong B., Sasaki S., Muramatsu Y., Ohta T., Kose H., Fujita T., Yamada T. (2014 b). The G allele at the g.70014208A>G in the MYBPC1 gene associated with high marbling in Japanese Black cattle is at a low frequency in breeds not selected for marbling. J. Genet., 93: 231–233.10.1007/s12041-014-0353-4
  39. Tong B., Xing Y.P., Muramatsu Y., Ohta T., Kose H., Zhou H.M., Yamada T. (2015). Association of expression levels in skeletal muscle and a SNP in the MYBPC1 gene with growthrelated trait in Japanese Black beef cattle. J. Genet., 94: 135–137.10.1007/s12041-015-0471-7
  40. Tong B., Zhang L., Li G.P. (2017). Progress in the molecular and genetic modification breeding of beef cattle in China. Hereditas, 39: 984–1015.
  41. Wang L., Raza S., Gui L., Li S., Liu X., Yang X., Wang S., Zan L., Zhao C. (2020). Associations between UASMS2 polymorphism in leptin gene and growth, carcass and meat quality traits of cattle: a meta-analysis. Anim. Biotechnol., 17: 1–10.10.1080/10495398.2020.1805327
  42. Watanabe N., Yamada T., Yoshioka S., Iton M., Satoh Y., Furuta M., Komatsu S., Sumio Y., Fujita T., Sasaki Y. (2010). The T allele at the g.1471620G>T in the EDG1 gene associated with high marbling in Japanese Black cattle is at a low frequency in breeds not selected for marbling. Anim. Sci. J., 81: 142–144.10.1111/j.1740-0929.2009.00704.x
  43. Watanabe N., Satoh Y., Fujita T., Ohta T., Kose H., Muramatsu Y., Yamamoto T., Yamada T. (2011). Distribution of allele frequencies at TTN g.231054C>T, RPL27A g.3109537C>T and AKIRIN2 c.188G>a between Japanese Black and four other cattle breeds with differing historical selection for marbling. BMC Res. Notes, 4: 10.10.1186/1756-0500-4-10
  44. Wei D.W., Raza S.H.A., Zhang J.P., Gui L.S., Rahman S.U., Khan R., Hosseini S., Kaleri H., Zan L.S. (2018). Polymorphism in promoter of SIX4 gene shows association with its transcription and body measurement traits in Qinchuan cattle. Gene, 656: 9–16.10.1016/j.gene.2018.02.059
  45. Wu S., Wang Y., Ning Y., Guo H., Wang X., Zhang L., Khan R., Cheng G., Wang H., Zan L. (2018). Genetic variants in STAT3 promoter regions and their application in molecular breeding for body size traits in Qinchuan cattle. Int. J. Mol. Sci., 19: 1035.10.3390/ijms19041035
  46. Yamada T. (2014). Genetic dissection of marbling trait through integration of mapping and expression profiling. Anim. Sci. J., 85: 349–355.10.1111/asj.12179
  47. Yamada T., Sasaki S., Sukegawa S., Yoshioka S., Takahagi Y., Morita M., Murakami H., Morimatsu F., Fujita T., Miyake T., Sasaki Y. (2009 a). Association of a single nucleotide polymorphism in titin gene with marbling in Japanese Black beef cattle. BMC Res. Notes, 2: 78.10.1186/1756-0500-2-78268386319419586
  48. Yamada T., Sasaki S., Sukegawa S., Miyake T., Fujita T., Kose H., Morita M., Takahagi Y., Murakami H., Morimatsu F., Sasaki Y. (2009 b). Novel SNP in 5′ flanking region of EDG1 associated with marbling in Japanese Black beef cattle. Anim. Sci. J., 80: 486–489.10.1111/j.1740-0929.2009.00665.x20163611
  49. Yamada T., Itoh M., Nishimura S., Taniguchi Y., Miyake T., Sasaki S., Yoshioka S., Fujita T., Shiga K., Morita M., Sasaki Y. (2009 c). Association of single nucleotide polymorphisms in the endothelial differentiation sphingolipid G-protein-coupled receptor 1 gene with marbling in Japanese Black beef cattle. Anim. Genet., 40: 209–216.10.1111/j.1365-2052.2008.01822.x19133939
  50. Yamada T., Sasaki S., Sukegawa S., Yoshioka S., Takahagi Y., Morita M., Murakami H., Morimatsu F., Fujita T., Miyake T., Sasaki Y. (2011). Possible association of single nucleotide polymorphism in titin gene with growth-related traits in Japanese Black beef cattle. J. Anim Vet. Adv., 10: 2603–2606.10.3923/javaa.2011.2603.2606
DOI: https://doi.org/10.2478/aoas-2021-0025 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 121 - 139
Submitted on: Oct 21, 2020
|
Accepted on: Apr 15, 2021
|
Published on: Feb 4, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2022 Zixuan Cheng, Cong Sheng, Yaxing Li, Shenyuan Wang, Kaifeng Wu, Jianfeng Liu, Seiki Sasaki, Takahisa Yamada, Su Ya, Huanmin Zhou, Linsen Zan, Bin Tong, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.