Have a personal or library account? Click to login
Association Between Natriuretic Peptide Receptor 2 (NPR2) RS208158047 Polymorphism and Fattening Performance of Young Bulls Cover

Association Between Natriuretic Peptide Receptor 2 (NPR2) RS208158047 Polymorphism and Fattening Performance of Young Bulls

Open Access
|Feb 2022

References

  1. Ahbara A., Bahbahani H., Almathen F., Al Abri M., Agoub M.O., Abeba A., Kebede A., Musa H.H., Mastrangelo S., Pilla F., Ciani E., Hanotte O., Mwacharo J.M. (2019). Genome-wide variation, candidate regions and genes associated with fat deposition and tail morphology in Ethiopian indigenous sheep. Front. Genet., 9: 699.10.3389/fgene.2018.00699
  2. Almeida O.A.C., Moreira G.C.M., Rezende F.M., Boschiero C., De Oliveira Peixoto J., Ibelli A.M.G., Ledur M.C., de Novais F.J., Coutinho L.L. (2019). Identification of selection signatures involved in performance traits in a paternal broiler line. BMC Genomics, 20: 449.10.1186/s12864-019-5811-1
  3. Anand-Srivastava M.B. (2005). Natriuretic peptide receptor-C signaling and regulation. Peptides, 26: 1044–1059.10.1016/j.peptides.2004.09.023
  4. Andersson L. (2012). How selective sweeps in domestic animals provide new insight into biological mechanisms. J. Intern. Med., 271: 1–14.10.1111/j.1365-2796.2011.02450.x
  5. Bartels C.F., Bükülmez H., Padayatti P., Rhee D.K., van Ravenswaaij-Arts C., Pauli R.M., Mundlos S., Chitayat D., Shih L.Y., Al-Gazali L.I., Kant S., Cole T., Morton J., Cormier-Daire V., Faivre L., Lees M., Kirk J., Mortier G.R., Leroy J., Zabel B., Kim C.A., Crow Y., Braverman N.E., vanden Akker F., Warman M.L. (2004). Mutations in the transmembrane natriuretic peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux. Am. J. Hum. Genet., 75: 27–34.10.1086/422013
  6. Blaha M., Nemcova L., Prochazka R. (2015). Cyclic guanosine monophosphate does not inhibit gonadotropin-induced activation of mitogen-activated protein kinase 3/1 in pig cumulusoocyte complexes. Reprod. Biol. Endocrinol., 13: 1.10.1186/1477-7827-13-1
  7. Bouwman A.C., Daetwyler H.D., Chamberlain A.J., Ponce C.H., Sargolzaei M., Schenkel F.S., Sahana G., Govignon-Gion A., Boitard S., Dolezal M., Pausch H., Brøndum R.F., Bowman P.J., Thomsen B., Guldbrandtsen B., Lund M.S., Servin B., Garrick D.J., Reecy J., Vilkki J., Bagnato A., Wang M., Hoff J.L., Schnabel R.D., Taylor J.F., Vinkhuyzen A.A.E., Panitz F., Bendixen C., Holm L.E., Gredler B., Hozé C., Boussaha M., Sanchez M.P., Rocha D., Capitan A., Tribout T., Barbat A., Croiseau P., Drögemüller C., Jagannathan V., Vander Jagt C., Crowley J.J., Bieber A., Purfield D.C., Berry D.P., Emmerling R., Götz K.U., Frischknecht M., Russ I., Sölkner J., Van Tassell C.P., Fries R., Stothard P., Veerkamp R.F., Boichard D., Goddard M.E., Hayes B.J. (2018). Metaanalysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals. Nat. Genet., 50: 362–367.10.1038/s41588-018-0056-5
  8. Crispim A.C., Kelly M.J., Guimarães S.E.F., ESilva F.F., Fortes M.R.S., Wenceslau R.R., Moore S. (2015). Multi-trait GWAS and new candidate genes annotation for growth curve parameters in Brahman cattle. PloS ONE, 10: e0139906.10.1371/journal.pone.0139906
  9. de Simoni Gouveia J.J., da Silva M.V.G.B., Paiva S.R., de Oliveira S.M.P. (2014). Identification of selection signatures in livestock species. Genet. Mol. Biol., 37: 330–42.10.1590/S1415-47572014000300004
  10. FAO (2019). World Food and Agriculture – Statistical pocketbook. Rome.
  11. Keller S.R., Taylor D.R. (2008). History, chance and adaptation during biological invasion: Separating stochastic phenotypic evolution from response to selection. Ecol. Lett., 11: 852–866.10.1111/j.1461-0248.2008.01188.x
  12. Khan R., Raza S.H.A., Guo H., Xiaoyu W., Sen W., Suhail S.M., Rahman A., Ullah I., Abd El-Aziz A.H., Manzari Z., Alshawi A. (2020). Genetic variants in the TORC2 gene promoter and their association with body measurement and carcass quality traits in Qinchuan cattle. PloS ONE, 15: e0227254.10.1371/journal.pone.0227254
  13. Kijas J.W., Lenstra J.A., Hayes B., Boitard S., Porto Neto L.R., San Cristobal M., Servin B., Mc Culloch R., Whan V., Gietzen K., Paiva S., Barendse W., Cia-ni E., Raadsma H., Mc Ewan J., Dalrymple B., International Sheep Genomics Consortium Members (2012). Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PloS Biol., 10: e1001258.10.1371/journal.pbio.1001258
  14. Liu G.Y., Raza S.H.A., Zhou L., Abd El-Aziz A.H., Sabek A., Shoorei H., Amjadi M., Gui L.S. (2020). The genetic polymorphisms of melanocortin-4 receptor gene are associated with carcass quality traits in a Chinese indigenous beef cattle breed. Res. Vet. Sci., 132: 202–206.10.1016/j.rvsc.2020.06.011
  15. Michenet A., Barbat M., Saintilan R., Venot E., Phocas F. (2016). Detection of quantitative trait loci for maternal traits using high-density genotypes of Blonde d’Aquitaine beef cattle. BMC Genet., 17: 88.10.1186/s12863-016-0397-y
  16. Moradi M.H., Nejati-Javaremi A., Moradi-Shahrbabak M., Dodds K.G., Mc Ewan J.C. (2012). Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genet., 13: 10.10.1186/1471-2156-13-10
  17. Nei M., Roychoudhury A.K. (1974). Sampling variances of heterozygosity and genetic distance. Genetics, 76: 379–390.10.1093/genetics/76.2.379
  18. Ng P.C., Henikoff S. (2003). SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res., 31: 3812–3814.10.1093/nar/gkg509
  19. Olney R.C. (2006). C-type natriuretic peptide in growth: A new paradigm. Growth Horm. IGF Res., 16: S6–14.10.1016/j.ghir.2006.03.016
  20. Pitt D., Sevane N., Nicolazzi E.L., Mac Hugh D.E., Park S.D.E., Colli L., Martinez R., Bruford M.W., Orozco-ter Wengel P. (2019). Domestication of cattle: Two or three events? Evol. Appl., 12: 123–136.10.1111/eva.12674
  21. Potter L.R., Abbey-Hosch S., Dickey D.M. (2006). Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocrin. Rev., 27: 47–72.10.1210/er.2005-0014
  22. Randhawa I.A.S., Khatkar M.S., Thomson P.C., Raadsma H.W. (2016). A meta-assembly of selection signatures in cattle. PLoS ONE, 11: e0153013.10.1371/journal.pone.0153013
  23. Raza S.H.A., Khan R., Abdelnour S.A., El-Hack A., Mohamed E., Khafaga A.F., Taha A., Ohran H., Mei C., Schreurs N.M., Zan L. (2019). Advances of molecular markers and their application for body variables and carcass traits in Qinchuan cattle. Genes, 10: 717.10.3390/genes10090717
  24. Raza S.H.A., Liu G.Y., Zhou L., Gui L.S., Khan R., Jinmeng Y., Chugang M., Schreurs N.M., Ji R., Zan L. (2020 a). Detection of polymorphisms in the bovine leptin receptor gene affects fat deposition in two Chinese beef cattle breeds. Gene, 758: 144957.10.1016/j.gene.2020.14495732683081
  25. Raza S.H.A., Khan S., Amjadi M., Abdelnour S.A., Ohran H., Alanazi K.M., Abd El-Hack M.E., Taha A.E., Khan R., Gong C., Schreurs N.M. (2020 b). Genome-wide association studies reveal novel loci associated with carcass and body measures in beef cattle. Arch. Biochem. Biophys., 694: 108543.10.1016/j.abb.2020.10854332798459
  26. Raza S.H.A., Khan R., Gui L., Schreurs N.M., Wang X., Mei C., Yang X., Gong C., Zan L. (2020 c). Bioinformatics analysis and genetic polymorphisms in genomic region of the bovine SH2B2 gene and their associations with molecular breeding for body size traits in Qinchuan beef cattle. Biosci. Rep., 40: BSR20192113.10.1042/BSR20192113706989532110807
  27. Raza S.H.A., Shijun L., Khan R., Schreurs N.M., Manzari Z., Abd El-Aziz A.H., Ullah I., Kaster N., Shah M.A., Zan L. (2020 d). Polymorphism of the PLIN1 gene and its association with body measures and ultrasound carcass traits in Qinchuan beef cattle. Genome, 63: 483–492.10.1139/gen-2019-018432615043
  28. Snelling W.M., Allan M.F., Keele J.W., Kuehn L.A., Mc Daneld T., Smith T.P.L., Sonstegard T.S., Thallman R.M., Bennett G.L. (2010). Genome-wide association study of growth in crossbred beef cattle. J. Anim. Sci., 88: 837–848.10.2527/jas.2009-2257
  29. Sun W., Liu C., Feng Y., Zhuo G., Zhou W., Fei X., Zhang Z. (2017). Macrophage colonystimulating factor (M-CSF) is an intermediate in the process of luteinizing hormone-induced decrease in natriuretic peptide receptor 2 (NPR2) and resumption of oocyte meiosis. J. Ovarian Res., 10: 68.10.1186/s13048-017-0364-x
  30. Tamura N., Garbers D.L. (2003). Regulation of the guanylyl cyclase-B receptor by alternative splicing. J. Biol. Chem., 278: 48880–48889.10.1074/jbc.M308680200
  31. Tamura N., Doolittle L.K., Hammer R.E., Shelton J.M., Richardson J.A., Garbers D.L. (2004). Critical roles of the guanylyl cyclase B receptor in endochondral ossification and development of female reproductive organs. Proc. Natl. Acad. Sci., 101: 17300–17305.10.1073/pnas.0407894101
  32. Tsuji T., Kunieda T. (2005). A loss-of-function mutation in natriuretic peptide receptor 2 (NPR2) gene is responsible for disproportionate dwarfism in cn/cn mouse. J. Biol. Chem., 280: 14288–14292.10.1074/jbc.C500024200
  33. Vasques G.A., Arnhold I.J.P., Jorge A.A.L. (2014). Role of the natriuretic peptide system in normal growth and growth disorders. Horm. Res. Paediatr., 82: 222–229.10.1159/000365049
  34. Wang L., Raza S.H.A., Gui L., Li S., Liu X., Yang X., Wang S., Zan L., Zhao C. (2020). Associations between UASMS2 polymorphism in leptin gene and growth, carcass and meat quality traits of cattle: a meta-analysis. Anim. Biotech., doi: 10.1080/10495398.2020.1805327.10.1080/10495398.2020.180532732804584
  35. Wang S.R., Jacobsen C.M., Carmichael H., Edmund A.B., Robinson J.W., Olney R.C., Miller T.C., Moon J.E., Mericq V., Potter L.R., Warman M.L., Hirschhorn J.N., Dauber A. (2015). Heterozygous mutations in natriuretic peptide receptor-B (NPR2) gene as a cause of short stature. Hum. Mutat., 36: 474–481.10.1002/humu.22773
  36. Wei C., Wang H., Liu G., Wu M., Cao J., Liu Z., Liu R., Zhao F., Zhang L., Lu J., Du L. (2015). Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds. BMC Genomics, 16: 194.10.1186/s12864-015-1384-9
  37. Xu L., Bickhart D.M., Cole J.B., Schroeder S.G., Song J., Van Tassell C.P., Sonstegard T.S., Liu G.E. (2015). Genomic signatures reveal new evidences for selection of important traits in domestic cattle. Mol. Biol. Evol., 32: 711–725.10.1093/molbev/msu333
DOI: https://doi.org/10.2478/aoas-2021-0024 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 109 - 119
Submitted on: Nov 13, 2020
Accepted on: Apr 15, 2021
Published on: Feb 4, 2022
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Jale Metin Kıyıcı, Zeki Emre Şenöz, Mehmet Ulaş Çınar, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.