Have a personal or library account? Click to login
The Effect of Adding Molasses in Different Times on Performance of Nile Tilapia (Oreochromis niloticus) Raised in a Low-Salinity Biofloc System Cover

The Effect of Adding Molasses in Different Times on Performance of Nile Tilapia (Oreochromis niloticus) Raised in a Low-Salinity Biofloc System

Open Access
|Oct 2021

References

  1. Adorian T. J., Jamali H., Ghafari Farsani H., Darvishi P., Hasanpour S., Bagheri T., Roozbehfar R. (2019). Effects of probiotic bacteria bacillus on growth performance, digestive enzyme activity, and hematological parameters of Asian sea bass, Lates calcarifer (Bloch). Probiotics Antimicrob. Proteins, 11: 248–255.10.1007/s12602-018-9393-z
  2. Aguilera-Rivera D., Prieto-Davó A., Escalante K., Chávez C., Cuzon G., Gaxiola G. (2014). Probiotic effect of FLOC on Vibrios in the pacific white shrimp Litopenaeus vannamei. Aquaculture, 424: 215–219.10.1016/j.aquaculture.2014.01.008
  3. Ahmad I., Babitha Rani A. M., Verma A. K., Maqsood M. (2017). Biofloc technology: an emerging avenue in aquatic animal healthcare and nutrition. Aquacult. Int., 25: 1215–1226.10.1007/s10499-016-0108-8
  4. Alves G. F. O., Fernandes A. F. A., Alvarenga E. R., Turra E. M., Sousa A. B., Teixeira E. A. (2017). Effect of the transfer at different moments of juvenile Nile tilapia (Oreochromis niloticus) to the biofloc system in formation. Aquaculture, 479: 564–570.10.1016/j.aquaculture.2017.06.029
  5. AOAC (2005). Official methods of analysis. Association of Official Analytical Chemists, INC., Arlington, Virginia, USA, p. 245.
  6. APHA (2005). American Water Works Association, Water Pollution Control Association. Standard Methods for the Examination of Water and Wastewater (21st ed.). American Public Health Association, Washington, DC, USA.
  7. Apún-Molina J. P., Santamaría-Miranda A., Luna-González A., Martínez-Díaz S. F., Rojas-Contreras M. (2009). Effect of potential probiotic bacteria on growth and survival of tilapia Oreochromis niloticus L., cultured in the laboratory under high density and suboptimum temperature. Aquac. Res., 40: 887–894.10.1111/j.1365-2109.2009.02172.x
  8. Avnimelech Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264: 140–147.10.1016/j.aquaculture.2006.11.025
  9. Avnimelech Y. (2009). Biofloc Technology – A Practical Guide Book. 1st ed. The World Aquaculture Society, Baton Rouge, LA, USA, 182 pp.
  10. Avnimelech Y. (2012). Biofloc Technology – A Practical Guide Book. 2nd ed. The World Aquaculture Society, Baton Rouge, USA, 272 pp.
  11. Avnimelech Y., Kochba M. (2009). Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks, using 15N tracing. Aquaculture, 287: 163–168.10.1016/j.aquaculture.2008.10.009
  12. Bakhshi F., Najdegerami E. H., Manaffar R., Tokmechi A., Farah K. R., Jalali A. S. (2018). Growth performance, haematology, antioxidant status, immune response and histology of common carp (Cyprinus carpio L.) fed biofloc grown on different carbon sources. Aquac. Res., 49: 393–403.10.1111/are.13469
  13. Becerra-Dórame M., Martinez-Porchas M., Martinez-Cordova L. R., Rivas-Vega M. E., Lopez-Elias J. A., Porchas-Cornejo M. A. (2012). Production response and digestive enzymatic activity of the Pacific white shrimp Litopenaeus vannamei (Boone, 1931) intensively pre grown in microbial heterotrophic and autotrophic-based systems. Sci. World J., 723654, 6 pp.10.1100/2012/723654
  14. Bergmeyer H. U., Horder M., Rej R. (1986). International Federation of Clinical Chemistry (IFCC) Scientific Committee. J. Clin. Chem. Clin. Biochem., 24: 497–510.
  15. Bernfeld P. (1955). Amylase. In: Methods in Enzymology, Colowick S.P., Kaplan N.O. (eds.). Academic Press, New York, pp: 149–158.10.1016/0076-6879(55)01021-5
  16. Chen C., Wooster G. A., Bowser P. R. (2004). Comparative blood chemistry and histopathology of tilapia infected with Vibrio vulnificus or Streptococcus iniae or exposed to carbon tetrachloride, gentamicin or copper sulfate. Aquaculture, 239: 421–443.10.1016/j.aquaculture.2004.05.033
  17. Christopher M. A., Caipang H. X., Choo Z. B., Huilin H., Clara M., Lay-Yag J. L. (2015). Small-scale production of biofloc using various carbon sources for the freshwater culture of tilapia, Oreochromis sp. ABAH Bioflux, 7: 103–111.
  18. Colt J. (2006). Water quality requirements for reuse systems. Aquac. Eng., 34: 143–156.10.1016/j.aquaeng.2005.08.011
  19. Coyle S. D., Bright L. A., Wood D. R., Neal R. S., Tidwell J. H. (2011). Performance of Pacific white shrimp, Litopenaeus vannamei, reared in zero-exchange tank systems exposed to different light sources and intensities. J. World Aquacult. Soc., 42: 687–695.10.1111/j.1749-7345.2011.00512.x
  20. Crab R., Kochva M., Verstraete W., Avnimelech Y. (2009). Bio-flocs technology application in over-wintering of tilapia. Aquac. Eng., 40: 105–112.10.1016/j.aquaeng.2008.12.004
  21. De Schryver P., Sinha A. K., Kunwar P. S., Baruah K., Verstraete W., Boon N., De Boeck G., Bossier P. (2010). Poly-β-hydroxybutyrate (PHB) increases growth performance and intestinal bacterial range-weighted richness in juvenile European sea bass, Dicentrarchus labrax. Appl. Microbiol. Biotechnol., 86: 1535–1541.10.1007/s00253-009-2414-9
  22. Deng M., Chen J., Gou J., Hou J., Li D., He X. (2018). The effect of different carbon sources on water quality, microbial community and structure of biofloc systems. Aquaculture, 482: 103–110.10.1016/j.aquaculture.2017.09.030
  23. Deutsche Gesellschaft für Klinische Chemie (1972). Empfehlungen der deutschen Gesellschaft für Klinische Chemie. Standardisierung von Methoden zur Bestimmung von Enzymaktivitaten in biologischen flussigkeiten. (Standardizition of methods for measurement of enzymatic activities in biological fluids). Z. Klin. Chem. Klin. Biochem., 10: 182–192.
  24. Durigon E. G., Almeida A. P. G., Jerônimo G. T., Baldisserotto B., Emerencianoa M. G. C. (2019). Digestive enzymes and parasitology of Nile tilapia juveniles raised in brackish biofloc water and fed with different digestible protein and digestible energy levels. Aquaculture, 506: 35–41.10.1016/j.aquaculture.2019.03.022
  25. Durigon E. G., Lazzari R., Uczay J., Lopes D. L. D. A., Jerônimo G. T., Sgnaulin T., Emerenciano M. G. C. (2020). Biofloc technology (BFT): Adjusting the levels of digestible protein and digestible energy in diets of Nile tilapia juveniles raised in brackish water. Aquacult. Fish., 5: 42–51.10.1016/j.aaf.2019.07.001
  26. Ekasari J., Crab R., Verstraete W. (2010). Primary nutritional content of bio-flocs cultured with different organic carbon sources and salinity. HAYATI J. Biosci., 17: 125–130.10.4308/hjb.17.3.125
  27. Ekasari J., Rivandi D. R., Firdausi A. P., Surawidjaja E. H., Zairin M., Bossier P., De Schryver P. (2015). Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture, 441: 72–77.10.1016/j.aquaculture.2015.02.019
  28. El-Sayed E. M. (2006). Tilapia Culture. CABI Publishing, Cambridge Massachusetts, USA, 275 p.10.1079/9780851990149.0000
  29. Emerenciano M., Ballester E. L., Cavalli R. O., Wasielesky W. (2012). Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquac. Res., 43: 447–457.10.1111/j.1365-2109.2011.02848.x
  30. Emerenciano M. G. C., Martínez-Córdova L. R., Martínez-Porchas M., Miranda-Baeza A. (2017). Biofloc technology (BFT): a tool for water quality management in aquaculture. Water Quality, InTech, London, UK, pp. 91–109.10.5772/66416
  31. Garcia-Carreno F. L., Haard N. F. (1993). Characterization of proteinase classes in langostilla (Pleuroncodes planipes) and crayfish (Pacifastacus astacus) extracts. J. Food Biochem., 17: 97–113.10.1111/j.1745-4514.1993.tb00864.x
  32. García-Ríos L., Miranda-Baeza A., Coelho-Emerenciano M. G., Huerta-Rábago J. A., Osuna-Amarillas P. (2019). Biofloc technology (BFT) applied to tilapia fingerlings production using different carbon sources: Emphasis on commercial applications. Aquaculture, 502: 26–31.10.1016/j.aquaculture.2018.11.057
  33. Hakim Y., Uni Z., Hulata G., Harpaz S. (2006). Relationship between intestinal brush border enzymatic activity and growth rate in tilapias fed diets containing 30% or 48% protein. Aquaculture, 257: 420–428.10.1016/j.aquaculture.2006.02.034
  34. Hao L., Wang Z., Xing B. (2009). Effect of sub-acute exposure to TiO nanoparticles on oxidative stress and histopathological changes in juvenile carp (Cyprinus carpio). J. Environ. Sci., 21: 1459–1466.10.1016/S1001-0742(08)62440-7
  35. Haridas H., Verma A. K., Rathore G., Prakash C., Banerjee P. (2017). Enhanced growth and immuno-physiological response of Genetically Improved Farmed Tilapia in indoor biofloc units at different stocking densities. Aquac. Res., 48: 4346–4355.10.1111/are.13256
  36. Hu Z., Lee J. W., Chandran K., Kim S., Brotto A. C., Khanal S. K. (2015). Effect of plant species on nitrogen recovery in aquaponics. Bioresour. Technol., 188: 92–98.10.1016/j.biortech.2015.01.013
  37. Iijima N., Tanaka S., Ota Y. (1998). Purification and characterization of bile salt-activated lipase from the hepatopancreas of red sea bream (Pagrus major). Fish Physiol. Biochem., 18: 59–69.
  38. Jenabi Haghparast R., Moghanlou K. S., Mohseni M., Imani A. (2019). Effect of dietary soybean lecithin on fish performance, hemato-immunological parameters, lipid biochemistry, antioxidant status, digestive enzymes activity and intestinal histomorphometry of pre-spawning Caspian brown trout (Salmo trutta caspius). Fish Shellfish Immunol., 91: 50–57.10.1016/j.fsi.2019.05.022
  39. Ju Z., Forster I., Conquest L., Dominy W. (2008). Enhanced growth effects on shrimp (Litopenaeus vannamei) from inclusion of whole shrimp floc or floc fractions to a formulated diet. Aquac. Nutr., 14: 533–543.10.1111/j.1365-2095.2007.00559.x
  40. Kamrani E., Sharifinia M., Hashemi S. H. (2016). Analyses of fish community structure changes in three subtropical estuaries from the Iranian coastal waters. Mar. Biodivers., 46: 561–577.10.1007/s12526-015-0398-5
  41. Khanjani M. H., Sharifinia M. (2020). Biofloc technology as a promising tool to improve aquaculture production. Rev. Aquacult., 12: 1836–1850.10.1111/raq.12412
  42. Khanjani M. H., Sajjadi M., Alizadeh M., Sourinejad I. (2016). Study on nursery growth performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) under different feeding levels in zero water exchange system. Iran. J. Fish. Sci.,15: 1465–1484.
  43. Khanjani M. H., Sajjadi M. M., Alizadeh M., Sourinejad I. (2017). Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquac. Res., 48: 1491–1501.10.1111/are.12985
  44. Khanjani M. H., Alizadeh M., Sharifinia M. (2020 a). Rearing of the Pacific white shrimp, Litopenaeus vannamei in a biofloc system: The effects of different food sources and salinity levels. Aquac. Nutr., 26: 328–337.10.1111/anu.12994
  45. Khanjani M. H., Sharifinia M. Hajirezaee S. (2020 b). Effects of different salinity levels on water quality, growth performance and body composition of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultured in a zero water exchange heterotrophic system. Ann. Anim. Sci., 20: 1–16.10.2478/aoas-2020-0036
  46. Khanjani M. H., Alizadeh M., Sharifinia M. (2021 a). Effects of different carbon sources on water quality, biofloc quality, and growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in a heterotrophic culture system. Aquacult. Int., 29: 307–321.10.1007/s10499-020-00627-9
  47. Khanjani M. H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021 b). Biofloc system applied to Nile tilapia (Oreochromis niloticus) farming using different carbon sources: growth performance, carcass analysis, digestive and hepatic enzyme activity. Iran. J. Fish. Sci., 20: 490–513.
  48. Khatoon H., Banerjee S., Yuan G., Haris N., Ikhwanuddin M., Ambak M., Endutet A. (2016). Biofloc as a potential natural feed for shrimp postlarvae. Int. Biodeterior. Biodegrad., 113: 304–309.10.1016/j.ibiod.2016.04.006
  49. Kumolu-Johnson C. A., Ndimele P. E. (2010). Length-weight relationships and condition factors of twenty-one fish species in Ologe Lagoon, Lagos, Nigeria. Asian J. Agric. Sci., 4: 174–179.
  50. Lima P. C. M., Abreu J. L., Silva A. E. M., Severi W., Galvez A. O., Brito L. O. (2018). Nile tilapia fingerling cultivated in a low-salinity biofloc system at different stocking densities. Span. J. Agric. Res., 16: 612–621.10.5424/sjar/2018164-13222
  51. Lin S., Mai K., Tan B. (2007). Effects of exogenous enzyme supplementation in diets on growth and feed utilization in tilapia, Oreochromis niloticus×O. aureus. Aquac. Res., 38: 1645–1653.10.1111/j.1365-2109.2007.01825.x
  52. Liu G., Ye Z., Liu D., Zhao J., Sivaramasamy E., Deng Y., Zhu S. (2018). Influence of stocking density on growth, digestive enzyme activities, immune responses, antioxidant of Oreochromis niloticus fingerlings in biofloc systems, Fish Shellfish Immunol., 81: 416–422.10.1016/j.fsi.2018.07.047
  53. Long L., Yang J., Li Y., Guan C., Wu F. (2015). Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture, 448: 135–141.10.1016/j.aquaculture.2015.05.017
  54. Luo G., Wang C., Liu W., Sun D., Li L., Tan H. (2014). Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422–423: 1–7.10.1016/j.aquaculture.2013.11.023
  55. Márquez A. G., Demessence A., Platero-Prats A. E., Heurtau D., Horcajada P., Serre C., Chang J. S., Férey G., dela Peña-O’ Shea V. A., Boissière C., Grosso D., Sanchez C. (2012). Green microwave synthesis of MIL-100 (Al, Cr, Fe) nanoparticles for thin-film elaboration. Eur. J. Inorg. Chem., 100: 5165–5174.10.1002/ejic.201200710
  56. Martins G. B., da Rosa C. E., Tarouco F. M, Robaldo R. B. (2019). Growth, water quality and oxidative stress of Nile tilapia Oreochromis niloticus (L.) in biofloc technology system at different pH. Aquac. Res., 50: 1030–1039.10.1111/are.13975
  57. Menaga M., Felixb S., Charulatha M., Gopalakannana A., Panigrahic A. (2019). Effect of in-situ and ex-situ biofloc on immune response of Genetically Improved Farmed Tilapia. Fish Shellfish Immunol., 92: 698–705.10.1016/j.fsi.2019.06.031
  58. Minabi K., Sourinejad I., Alizadeh M., Rajabzadeh Ghatrami E., Khanjani M. H. (2020). Effects of different carbon to nitrogen ratios in the biofloc system on water quality, growth, and body composition of common carp (Cyprinus carpio L.) fingerlings. Aquacult. Int., 28: 1883–1898.10.1007/s10499-020-00564-7
  59. Mirzakhani N., Ebrahimi E., Jalali S. A. H., Ekasari J. (2019). Growth performance, intestinal morphology and nonspecific immunity response of Nile tilapia (Oreochromis niloticus) fry cultured in biofloc systems with different carbon sources and input C:N ratios. Aquaculture, 512: 734235.10.1016/j.aquaculture.2019.734235
  60. MOOPAM (1999). Manual of oceanographic observations and pollutant analysis methods. Kuwait, ROPME, 1: 20.
  61. Morado C. N., Araújo F. G., Gomes I. D. (2017). The use of biomarkers for assessing effects of pollutant stress on fish species from a tropical river in Southeastern Brazil. Acta Sci., 39: 431–439.10.4025/actascibiolsci.v39i4.34293
  62. Najdegerami E. H., Bakhshi F., Lakani F. B. (2016). Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system. Fish Physiol. Biochem., 42: 457–465.10.1007/s10695-015-0151-9
  63. Panigrahi A., Saranya C., Sundaram M., Kannan S. V., Das R. R., Kumar R. S., Rajesh P., Otta S. (2018). Carbon: Nitrogen (C: N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp (Litopenaeus vannamei) in biofloc based culture system. Fish Shellfish Immunol., 81: 329–337.10.1016/j.fsi.2018.07.035
  64. Pérez-Fuentes J. A., Hernández-Vergara M. P., Pérez-Rostro C. I., Fogel I. (2016). C:N ratios affect nitrogen removal and production of Nile tilapia Oreochromis niloticus raised in a biofloc system under high density cultivation. Aquaculture, 452: 247–251.10.1016/j.aquaculture.2015.11.010
  65. Pinho S. M., Molinari D., de Mello G. L., Fitzsimmons K. M., Emerenciano M. G. C. (2017). Effluent from a biofloc technology (BFT) tilapia culture on the aquaponics production of different lettuce varieties. Ecol. Eng., 103: 146–153.10.1016/j.ecoleng.2017.03.009
  66. Qi Z., Zhang X. H., Boon N., Bossier P. (2009). Probiotics in aquaculture of China – current state, problems and prospect. Aquaculture, 290: 15–21.10.1016/j.aquaculture.2009.02.012
  67. Ren W., Li L., Dong S., Tian X., Xue Y. (2019). Effects of C/N ratio and light on ammonia nitrogen uptake in Litopenaeus vannamei culture tanks. Aquaculture, 498: 123–131.10.1016/j.aquaculture.2018.08.043
  68. Santacruz-Reyes R. A., Chien Y. H. (2012). The potential of Yucca schidigera extract to reduce the ammonia pollution from shrimp farming. Bioresour. Technol., 113: 311–314.10.1016/j.biortech.2012.02.132
  69. Santos J. F., Soares K. L. S., Assis C. R. D., Guerra C. A. M., Lemos D., Carvalho L. B., Bezerra R. S. (2016). Digestive enzyme activity in the intestine of Nile tilapia (Oreochromis niloticus L.) under pond and cage farming systems. Fish Physiol. Biochem., 42: 1259–1274.10.1007/s10695-016-0215-5
  70. Seixas Filho J. T., Oliveira M. G. A., Donzele J. L., Gomide A. T. M., Menin E. (2000). Lipase activity in the chime of three Teleostei freshwater fish. Rev. Bras. Zootec., 29: 6–14.10.1590/S1516-35982000000100002
  71. Shahsavani D., Kazerani H. R., Kaveh S., Gholipour-Kanani H. (2010). Determination of some normal serum parameters in starry sturgeon (Acipenser stellatus Pallas, 1771) during spring season. Comp. Clin. Path., 19: 57–61.10.1007/s00580-009-0899-3
  72. Suárez M. D., Trenzado C. E., García-Gallego M., Furné M., García-Mesa S., Domezain A., Alba I., Sanz A. (2015). Interaction of dietary energy levels and culture density on growth performance and metabolic and oxidative status of rainbow trout (Oncorhynchus mykiss). Aquac. Eng., 67: 59–66.10.1016/j.aquaeng.2015.06.001
  73. Toledo T. M., Silva B. C., Vieira F. D. N., Mourino J. L. P., Seiffert W. Q. (2016). Effects of different dietary lipid levels and fatty acids profile in the culture of white shrimp Litopenaeus vannamei (Boone) in biofloc technology: water quality, biofloc composition, growth and health. Aquac. Res., 47: 1841–1851.10.1111/are.12642
  74. Wang G., Yu E., Xie J., Yu D., Li Z., Luo W., Qiu L., Zheng Z. (2015). Effect of C:N ratio on water quality in zero-water exchange tanks and the biofloc supplementation in feed on the growth performance of crucian carp, Carassius auratus. Aquaculture, 443: 98–104.10.1016/j.aquaculture.2015.03.015
  75. Wang M., Lu M. (2016). Tilapia polyculture: a global review. Aquac. Res., 47: 2363–2374.10.1111/are.12708
  76. Xu W. J., Pan L. Q. (2012). Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture, 356: 147–152.10.1016/j.aquaculture.2012.05.022
  77. Xu W. J., Pan L. Q. (2014). Dietary protein level and C/N ratio manipulation in zero exchange culture of Litopenaeus vannamei: Evaluation of inorganic nitrogen control, biofloc composition and shrimp performance. Aquac. Res., 45: 1842–1851.10.1111/are.12126
  78. Yeganeh V., Sharifinia M., Mobaraki S., Dashtiannasab A., Aeinjamshid K., Borazjani J. M., Maghsoudloo T. (2020). Survey of survival rate and histological alterations of gills and hepatopancreas of the Litopenaeus vannamei juveniles caused by exposure of Margalefidinium / Cochlodinium polykrikoides isolated from the Persian Gulf. Harmful Algae, 97: 101856.10.1016/j.hal.2020.101856
  79. Zhou X. X., Wang Y. B., Li W. F. (2009). Effect of probiotic on larvae shrimp (Penaeus vannamei) based on water quality, survival rate and digestive enzyme activities. Aquaculture, 287: 349–353.10.1016/j.aquaculture.2008.10.046
  80. Ziaei-Nejad S., Rezaei M. H., Takami G. A., Lovett D. L., Mirvaghefi A. R., Shakouri M. (2006). The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture, 252: 516–524.10.1016/j.aquaculture.2005.07.021
DOI: https://doi.org/10.2478/aoas-2021-0011 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1435 - 1454
Submitted on: Sep 26, 2020
|
Accepted on: Jan 28, 2021
|
Published on: Oct 28, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2021 Mohammad Hossein Khanjani, Morteza Alizadeh, Mohammad Mohammadi, Habib Sarsangi Aliabad, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.